Proposed Subdivision Brush Creek Estate -Precinct 2, Stage 4 Site Classification

Kenakan Street, Edgeworth

NEW18P-0170G-AB 9 June 2022

GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING

9 June 2022

McCloy Edgeworth Pty Ltd Suite 2, Ground Floor, 317 Hunter Street NEWCASTLE NSW 2300

Attention: Mr Harry Thomson

Dear Sir

RE: PROPOSED SUBDIVISION - BRUSH CREEK ESTATE - PRECINCT 2, STAGE 4
KENAKAN STREET, EDGEWORTH
SITE CLASSIFICATION (LOTS 401 TO 430)

Please find enclosed our geotechnical report for Lots 401 to 430 within Precinct 2, Stage 4 of the Brush Creek Estate residential subdivision, located at Kenakan Street, Edgeworth.

The report includes recommendations for Site Classification in accordance with AS2870-2011, "Residential Slabs and Footings" following the completion of site regrading earthworks.

If you have any questions regarding this report, please do not hesitate to contact Ben Edwards, Shannon Kelly or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee

Principal Geotechnical Engineer

Table of Contents:

1.0		Introduction	1
2.0		Desktop Study	1
3.0		Field Work	1
4.0		Site Description	2
	4.1	Site Regrade Works	2
	4.2	Surface Conditions	3
	4.3	Subsurface Conditions	5
5.0		Laboratory Testing	10
6.0		Site Classification to AS2870-2011	12
7.0		Limitations	13

i

Attachments:

Figure AB1: Site Plan and Approximate Test Locations

Sale Plan: Sale Plan for Brush Creek Stage 4

Appendix A: Results of Field Investigations
Appendix B: Results of Laboratory Testing

Appendix C: CSIRO Sheet BTF 18

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this geotechnical report on behalf of McCloy Edgeworth Pty Ltd (McCloy), for Precinct 2, Stage 4, of the Brush Creek Estate residential subdivision, located at Kenakan Street, Edgeworth.

Based on the brief and drawings provided by the client, Stage 4 is understood to include 30 residential allotments (Lots 401 to 430), as shown on the attached sales plan provided by McCloy.

The scope of work for the geotechnical investigation included providing site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 'Residential Slabs and Footings', following completion of site regrade works.

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 Desktop Study

The scope of work has included a review of the following reports completed by Qualtest:

- Level 1 Site Re-grade Assessment Report, 'Brush Creek Estate Precinct 2 Stage 4, Edgeworth (KCE No. 20100)', (Report Reference: NEW20P-0011D-AA.Rev1, dated June 2022);
- Site Classification, 'Proposed Subdivision, Brush Creek Estate Precinct 2, Stage 2, Kenakan Street, Edgeworth', (Report Reference: NEW17P-0170F-AB, dated 17 January 2022);
- Site Classification, 'Proposed Subdivision, Brush Creek Estate Precinct 2, Stage 3, Tarkalong Street, Edgeworth', (Report Reference: NEW17P-0170E-AB, dated 29 October 2021); and,
- Geotechnical Assessment, 'Proposed Subdivision, Brush Creek Estate Precinct 2, Transfield Avenue, Edgeworth, (Report Reference: NEW18P-0170A-AA.Rev1, dated 4 March 2020).

This report includes a summary of selected results from the previous reports. Reference should be made to the reports outlined above for further details of site description, subsurface conditions, field work conducted, engineering logs of test pits / boreholes, laboratory testing results, site supervision and density testing carried out.

3.0 Field Work

Field work investigations were carried out on 12 and 29 April, 2022 and comprised of:

- DBYD search, review of plans, and visual check of proposed test locations for the presence of underground services;
- Site walkover to make observations of surface features at the property and in the immediate surrounding area;
- Excavation of 31 boreholes (BH401 to BH430, and BH423A) using a 2.7 tonne excavator equipped with a 300mm diameter auger attachment. Boreholes were terminated at depths of between 0.31m and 2.00m;
- Undisturbed samples (U50 tubes) and small disturbed samples were taken for subsequent laboratory testing; and,

 Boreholes were backfilled with the excavation spoil and compacted using the excavator auger and tracks, or hand tools.

Investigations were carried out by an experienced Geotechnical Engineer from Qualtest who located the boreholes, carried out the sampling and testing, produced field logs of the boreholes, and made observations of the site surface conditions.

Engineering logs of the boreholes are presented in Appendix A.

Approximate borehole locations are shown on the attached Figure AB1. Boreholes were located in the field by handheld GPS and relative to existing site features including topographic features, lot boundaries, existing developments and trees.

4.0 Site Description

4.1 Site Regrade Works

Site re-grading filling works within Stage 4 of the development was conducted between 9 August 2021 and 17 February 2022. Re-grade works included filling within all or portions of Lots 401 to 418 and 419 to 427, along with portions of Kenakan Street and Taralong Street.

Further regrade works were performed on Lot 430 between 3 and 6 June 2022, which included the removal of unsuitable and deleterious material to expose the underlying Residual Clay / Weathered Rock profiles, prior to filling within an isolated portion of the lot.

Refer to attached Figure AB1 for the approximate extent of re-grade filling works for this portion of the development.

Prior to filling, re-grade areas were stripped of topsoil and unsuitable material to expose the suitable natural foundation profile. Preparation works were then performed, which consisted of tyning, re-conditioning and re-compaction of the stripped surface, prior to filling with approved site fill to design finish levels.

Filling was performed using either site stockpiled material won from excavations cut from around the site, and/or with approved VENM classified imported material. The fill material could generally be described as mixtures of Residual (CI-CH) Sandy CLAY, medium to high plasticity, brown / red / grey in colour, with fine to coarse grained Sand and Gravel, along with Extremely Weathered (EW) Siltstone / Sandstone, pale yellow / brown / white in colour, blended with minor quantities of on-site pale brown Colluvium.

The approximate depth of fill placed ranged in the order of 0.1m to about 4.5m, with the deepest areas being within the Tarkalong and Kenakan Street intersection and embankment, adjacent Lots 402, 403, and within Lots 416 to 418 behind retaining walls and adjoining Stage 3 allotments.

The approximate maximum depth of fill placed within the re-grade areas excluding topsoil was in the order of:

- 401 to 403 0.1m to 4.5m;
- 404 to 407 0.6m to 1.2m;
- 408 to 409 0.6m to 0.9m;
- 410 to 413 0.1m to 0.6m;
- 414 to 418 0.1m to 2.1m;

- 419 to 420 0.1m to 1.5m;
- 421 to 427 0.1m to 0.6m;
- 430 0.1m to 0.6m;
- Kenakan Street and Tarkalong Street Intersection / Embankment 1.5m to 4.5m.

The fill was compacted in maximum lifts of 0.3m thickness. Any unsuitable or deleterious material within the fill was removed by hand or mechanical means prior to final compaction of the material.

As the geotechnical testing authority engaged for the project, Qualtest state that the filling performed for the re-grade fill areas within Precinct 2 Stage 4 (as shown on Figure AA1), was carried out to Level 1 criteria as defined in Clause 8.2 – Section 8 of AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".

The recommendations of this report are based on the understanding that any existing lot re-grade works are limited to the controlled earthworks supervised by Qualtest, and placement of low reactivity topsoil material such that total depth of topsoil and uncontrolled fill does not exceed 0.4m. Qualtest should be informed without delay if additional earthworks are known to have been carried out.

At the time of the field investigations on 12 and 29 April 2022, several small fill stockpiles were remaining on a number of lots, including Lot 409 and Lots 415 to 417. It is understood and expected that the fill stockpiles will be removed prior to development on the lots.

4.2 Surface Conditions

The site comprises Precinct 2, Stage 4 of the proposed residential subdivision known as Brush Creek Estate, located at Kenakan Street, Edgeworth, as shown on Figure AB1 attached.

The site is bounded by bushland, rural housing and Minmi Road to the west, to the north and south by bushland, and to the east by existing Stages 2 & 3.

Trafficability was judged to be good by way of 4WD vehicle along the existing sealed roads.

Photographs of the site taken on the day of the site investigations are shown below.

Photograph 1: From intersection of Kenakan and Koyikaling Street, facing southeast towards Lot 418.

Photograph 2: From near western boundary of Lot 418, facing northwest towards Lot 417.

Photograph 3: From near northern corner of Lots 416 and 417, facing southeast.

Photograph 4: From near northern corner of Lots 416 and 417, facing south.

Photograph 5: From near BH412, facing northeast.

Photograph 6: From near BH12, facing east.

Photograph 7: From BH410, facing northwest.

Photograph 8: From BH410, facing north.

Photograph 9: From near BH406, facing southwest.

Photograph 10: From near BH406, facing northwest (towards Kenakan Street).

Photograph 11: From near BH401, facing northwest.

Photograph 12: From near BH401, facing north.

Photograph 13: From near BH423A, facing southeast.

Photograph 14: From near BH423A, facing south.

Photograph 15: From near centre of Lot 430, facing east, following removal of additional unsuitable material to underlying residual clay / weathered rock material. Photograph taken on 03/06/22.

Photograph 16: From near north-western corner of Lot 430, showing placement and compaction of backfilled area under level 1 supervision. Photograph taken on 03/06/22.

4.3 Subsurface Conditions

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet indicates the site to be underlain by the Adamstown and Boolaroo Subgroups of the Newcastle Coal Measures, which are characterised by Sandstone, Conglomerate, Siltstone, Coal, and Tuff rock types.

Table 1 presents a summary of the typical soil and rock types encountered at borehole locations during the field investigation, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the geotechnical units at the borehole locations.

TABLE 1 - SUMMARY OF GEOTECHNICAL UNITS AND SOIL / ROCK TYPES

Unit	Soil Type	Description
1A	FILL – TOPSOIL / TOPSOIL	Sandy CLAY – medium plasticity, dark grey, fine to coarse grained sand, with some fine to medium grained angular to sub-angular gravel. Clayey SAND – fine grained, grey, fines of low plasticity, root affected.

Unit	Soil Type	Description
18	FILL – CONTROLLED	Gravelly Sandy CLAY – low to medium plasticity, dark grey-brown with some orange to red-brown in places, fine to coarse grained sand, fine to coarse grained angular gravel, trace cobbles in places. In places: Sandy CLAY, Gravelly Sandy CLAY / Clayey Sandy GRAVEL, Gravelly Sandy CLAY / Clayey Gravelly SAND.
1C	FILL – OTHER	Gravelly SAND – fine to coarse grained, dark grey, fine to medium grained sub-angular gravel. Sandy GRAVEL – fine to medium grained, angular, brown, fine to coarse grained sand.
2	SLOPEWASH / COLLUVIUM	Sandy CLAY – low plasticity, brown, fine grained sand, trace rootlets. Sandy Gravelly CLAY – low plasticity, brown, fine to medium grained angular to sub-angular gravel, fine to coarse grained (mostly fine grained) sand.
3	ALLUVIUM	Not encountered within this investigation.
4	residual soil	CLAY – medium to high plasticity, pale grey to white with some pale orange to red-brown and brown. Sandy CLAY – medium plasticity, dark grey-brown trace pale grey, fine to coarse grained sand, trace fine to medium grained subangular gravel. Gravelly Sandy CLAY – low plasticity, medium plasticity in places, pale brown / pale grey, fine to coarse grained sand, fine to medium grained sub-angular gravel. Clayey GRAVEL – fine to coarse grained, sub-angular to angular, grey-brown, fines of medium plasticity, trace fine to coarse grained sand. SAND – fine to medium grained, pale orange and pale grey to white, trace fines of low plasticity.
5	EXTREMELY WEATHERED (XW) ROCK with soil properties	Silty Sandstone / Sandstone; breaks down into SAND – fine to medium grained, pale brown. Sandstone; breaks down into Sandy CLAY – low to medium plasticity, pale grey to white and orange, fine grained sand, trace highly weathered rock pockets.
6	HIGHLY WEATHERED (HW) TO SLIGHTLY WEATHERED (SW) ROCK	SANDSTONE – fine to medium grained, pale grey with some pale orange, estimated very low to medium strength. SILTSTONE – pale grey and orange-brown, estimated very low to low strength. Sandy SILTSTONE – pale grey to white, estimated very low to low strength.

TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT BOREHOLE LOCATIONS

Location	UNIT 1A FILL-TOPSOIL /	UNIT 1B FILL -	UNIT 1C FILL - OTHER	UNIT 2 SLOPEWASH /	UNIT 3 ALLUVIUM	UNIT 4 RESIDUAL SOIL	UNIT 5 XW ROCK	HW TO SW
	TOPSOIL	CONTROLLED		COLLUVIUM	- ()			ROCK
				Depth				
	<u></u>		Curr	ent Investigation (April 2022)			1
BH401	0.00 - 0.10	0.10 - 1.00	· -	-	-	1.00 - 1.30	-	1.30 - 1.40*
BH402	-	0.00 - 1.40	-	-	-	1.40 - 2.00	-	-
BH403	0.00 - 0.10	0.10 - 1.95	-	-	-	1.95 - 2.00	-	-
BH404	0.00 - 0.15	0.15 - 1.20	-	-	-	1.20 - 2.00	-	-
BH405	0.00 - 0.20	0.20 - 0.80	-	-	-	0.80 - 1.90		1.90 - 2.00*
BH406	0.00 - 0.15	0.15 - 1.05	-	-	-	-	-	1.05 - 1.10*
BH407	0.00 - 0.15	0.15 - 0.60	-	-	-	0.60 - 0.80	-	0.80*
BH408	0.00 - 0.15	0.15 - 0.80	-	-	-	0.80 - 2.00	-	-
BH409	0.00 - 0.15	-	-	-	-	-	0.15 - 0.60	0.60*
BH410	0.00 - 0.25	-	-	-	-	0.25 - 0.80	-	0.80*
BH411	-	0.00 - 0.40	-	-	-	-	0.40 - 0.80	0.80*
BH412	0.00 - 0.25	-	-	-	-	0.25 - 0.40	0.40 - 0.60	0.60*
BH413	0.00 - 0.35	-	-	-	-	0.35 - 0.90	0.90 - 1.10	1.10*
BH414	0.00 - 0.10	0.10 - 0.70	-	-	-	0.70 - 1.10	-	1.10*
BH415	-	0.00 - 1.50	-	-	-	1.50 - 1.90	-	1.90 - 2.00
BH416	-	0.00 - 1.50	-	-	-	1.50 - 2.00	-	-
BH417	-	0.00 - 2.00	-	-	-	-	-	-
BH418	-	0.00 - 1.45	-	-	-	-	-	1.45 - 1.47*

Location	UNIT 1A	UNIT 1B	UNIT 1C	UNIT 2	UNIT 3	UNIT 4	UNIT 5	UNIT 6
	FILL-TOPSOIL / TOPSOIL	FILL - Controlled	FILL - OTHER	SLOPEWASH / COLLUVIUM	ALLUVIUM	RESIDUAL SOIL	XW ROCK	HW TO SW ROCK
				Depth	ı (m)			
BH419	-	0.00 - 1.40	-	-	-	1.40 - 2.00	-	-
BH420	-	0.00 - 1.30	-	1.30 - 1.40	-	-	-	1.40 - 1.42*
BH421	-	0.00 - 0.60	-	0.60 - 0.95	-	-	-	0.95 - 0.97*
BH422	-	0.00 - 0.50	-	-	-	-	-	0.50 - 0.51*
BH423	-	0.00 - 0.40	-	-	-	-	-	0.40 - 0.42*
BH23A	-	0.00 - 0.15	-	0.15 - 0.30	-	-	-	0.30 - 0.31*
BH424	-	-	-	-	-	-	0.00 - 0.35	0.35 - 0.36*
BH425	-	-	-	-	-	-	0.00 - 0.35	0.36 - 0.36*
BH426	1	0.00 - 0.10	1	-	-	0.10 - 0.35	-	0.35 - 0.36*
BH427	-	-	-	-	-	-	0.00 - 1.10	1.10 - 1.12*
BH428	0.00 - 0.15	-	-	-	-	0.15 - 0.75	-	0.75 - 0.76*
BH429	0.00 - 0.20	-	-	0.20 - 0.50	-	-	-	0.50 - 0.51*
BH430	1	-	0.00 - 0.60 +	-	-	0.60 - 0.65	-	0.65 - 0.66*
		Pro	evious Investigati	on (Ref: NEW18P-0	170F-AB, 17 Janu	ary 2022)		
BH208	1	0.00 - 0.90	1	-	-	-	-	0.90 - 0.91*
BH209	-	0.00 - 1.15	-	-	-	-	-	1.15 - 1.20*
		Pre	vious Investigation	n (NEW18P-0170E-	AB, dated 29 Oc	lober 2021)		
BH303	0.00 - 0.10	0.10 - 1.30	1	-	-	1.30 - 2.00	-	-
BH312	-	0.00 - 1.40	-	-	-	1.40 - 2.00	-	-
BH313	-	0.00 - 1.20	-	-	-	1.20 - 1.50	-	1.50 - 1.55*
BH318	-	-	-	-	-	0.00 - 0.20	-	0.20 - 2.00

Location	UNIT 1A FILL-TOPSOIL / TOPSOIL	UNIT 1B FILL - CONTROLLED	UNIT 1C FILL - OTHER	UNIT 2 SLOPEWASH / COLLUVIUM	UNIT 3 ALLUVIUM	UNIT 4 RESIDUAL SOIL	UNIT 5 XW ROCK	UNIT 6 HW TO SW ROCK
				Dept	h (m)			
BH319	-	-	-	-	-	1.20 - 1.30	0.00 - 0.20 1.30 - 2.45	0.20 - 1.20
BH320	-	-	-	-	-	0.00 - 1.60	-	1.60 - 2.00
BH321	0.00 - 0.05	-	-	-	-	0.05 - 0.50	-	0.50 - 1.60^
BH322	-	-	-	-	-	0.00 - 0.30#	0.30#	-
BH323	-	-	-	-	-	0.00 - 0.30#	0.30#	-
BH324	-	0.00 - 0.50	-	-	-	-	-	0.50 - 0.55*
		Previous Investiga	tion (Ref: NEW18P	-0170A-AA.Rev1,	4 March 2020) – F	rior to site regrade	works	
TPP01	0.00 - 0.20	-		0.20	- 0.45	-	0.45 - 1.40	1.40 - 1.90*
TPP02	0.00 - 0.25	-			-	-	-	0.25 - 0.50*
TPP03	0.00 - 0.20	-	-		_	-	0.20 - 1.80	1.80 - 2.10
TPP04	0.00 - 0.20	-	-		-	0.20 - 0.50	-	0.50 - 0.90*
TPP09	0.00 - 0.20	-	-		-	0.20 - 1.20	1.20 - 2.65	-
NOTES:								

Groundwater levels or inflows were not encountered in boreholes during the limited time that they remained open on the day of the field investigations.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

+ = BH430 (Fill Other from 0.0m to 0.6m depth) was removed and replaced as Controlled Fill between 3 & 6 June 2022.

5.0 Laboratory Testing

Samples collected during the field investigations were returned to our NATA accredited Newcastle Laboratory for testing which comprised of:

- (18 no.) Shrink / Swell tests; and
- (10 no.) Atterberg Limits tests.

Several shrink/swell tests were replaced by Atterberg Limits classification tests due to the friable nature of the soils.

Results of the laboratory testing are presented in Appendix B, with a summary of the Shrink/Swell and Atterberg Limits test results presented in Table 3 and Table 4, respectively, which also include results from previous testing in the area.

TABLE 3 - SUMMARY OF SHRINK/SWELL TESTING RESULTS

Location	Depth (m)	Material Description	I _{ss} (%)			
Current Investigation (April 2022)						
BH401	1.10 - 1.30	(CH) CLAY	1.9			
BH404	0.40 - 0.60	FILL: (CL) Gravelly Sandy CLAY	0.2			
BH405	0.50 - 0.65	FILL: (CL) Gravelly Sandy CLAY	0.1			
BH406	0.30 - 0.45	FILL: (CL) Gravelly Sandy CLAY	1.0			
BH406	0.60 - 0.75	FILL: (CL) Gravelly Sandy CLAY	1.2			
BH407	0.40 - 0.55	FILL: (CL) Gravelly Sandy CLAY	0.3			
BH408	0.30 - 0.45	FILL: (CL) Gravelly Sandy CLAY	0.1			
BH408	0.90 - 1.15	(CI) CLAY	1.2			
BH411	0.20 - 0.35	FILL - TOPSOIL: (CL) Sandy CLAY	0.4			
BH416	0.40 - 0.60	FILL: (CI) Gravelly Sandy CLAY	0.4			
BH417	0.50 - 0.70	FILL: (CI) Gravelly Sandy CLAY	1.2			
BH418	0.50 - 0.65	FILL: (CL) Gravelly Sandy CLAY	0.6			
BH418	1.00 - 1.15	FILL: (CI) Gravelly Sandy CLAY	0.4			
BH419	0.20 - 0.35	FILL: (CI) Gravelly Sandy CLAY	0.8			
BH420	0.30 - 0.45	FILL: (CI) Gravelly Sandy CLAY	0.6			
BH422	0.30 - 0.45	FILL: (CI) Gravelly Sandy CLAY	0.8			
BH423	0.20 - 0.35	FILL: (CI) Gravelly Sandy CLAY	2.0			
BH428	0.30 - 0.42	(CL) Sandy CLAY	0.3			
	Previous Investi	gation (Ref: NEW18P-0170F-AB, 17 January 20:	22)			
BH208	0.60 - 0.80	FILL: (CH) Sandy CLAY	0.5			

Previous Investigation (NEW18P-0170E-AB, dated 29 October 2021)						
BH312	BH312 0.50 - 0.65 FILL: (CL) Gravelly Sandy CLAY					
BH313	BH313 0.70 - 0.80 FILL: (CL) Gravelly Sandy CLAY					
BH320	0.70 - 1.00	(CH) CLAY	3.2			
BH321	0.35 - 0.50	(CH) CLAY	1.5			
Previous Investigation (Ref: NEW18P-0170A-AA.Rev1, 4 March 2020)						
TTP04	0.30 - 0.50	(CI) Sandy CLAY	1.0			
TTP09	0.40 - 0.50	(CH) CLAY	5.1			

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

Location	Depth (m)	Material Description	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)	
BH401	0.50 - 0.65	FILL: (CL) Gravelly Sandy CLAY	33	19	14	7.0	
BH402	0.40 - 0.80	FILL: (CL) Gravelly Sandy CLAY	41	22	19	8.5	
BH402	1.50 - 1.70	(CH) CLAY	46	20	26	11.0	
BH403	0.50 - 1.00	FILL: (CL) Gravelly Sandy CLAY	32	16	16	7.0	
BH405	1.50 - 1.70	(CI) CLAY	37	18	19	9.0	
BH414	0.30 - 0.60	FILL: (CI) Gravelly Sandy CLAY	34	16	18	8.5	
BH415	0.30 - 0.45	FILL: (CI) Gravelly Sandy CLAY	19	14	5	2.5	
BH419	1.50 - 1.70	(CH) CLAY	73	26	47	15.5	
BH421	0.40 - 0.55	FILL: (CI) Gravelly Sandy CLAY	34	18	16	9.0	
BH426	0.10 - 0.22	(CH) CLAY	48	19	29	10.0	
	Previous Investigation (Ref: NEW18P-0170F-AB, 17 January 2022)						
BH209	0.60 - 0.75	FILL: (CI) Gravelly Sandy CLAY	46	17	29	-	
Previous Investigation (NEW18P-0170E-AB, dated 29 October 2021)							
BH303	1.10 - 1.25	FILL: (CI) Gravelly Sandy CLAY	32	17	15	6.5	

The results of the Shrink/Swell and Atterberg Limits laboratory testing indicate that the fill and residual soils tested from the site mostly contain fines of low to medium plasticity.

Site Classification to AS2870-2011 6.0

Based on the results of the field work, laboratory testing and site regrade works conducted, residential lots located within Precinct 2, Stage 4 of the Brush Creek Estate residential subdivision, as shown on the attached Figure AB1, are classified in their current condition in accordance with AS2870-2011 'Residential Slabs and Footings', as shown in Table 5.

TABLE 5 - SITE CLASSIFICATION TO AS2870-2011

Lot Numbers	Site Classification			
409 to 413, and 422 to 426	M			
401 to 408, 414 to 421, and 427 to 430	Н1			
Notes: Localised fill stockniles remained on some lots at the time of the field investigations				

Localised till stockpiles remained on some lots at the time of the field investigations.

Site classifications provided herein are made on the understanding that the fill stockpiles will be removed prior to sales / development of the lots, such that remaining topsoil and/or uncontrolled fill depths on lots is less than 0.4m.

If any localised areas of topsoil and/or uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

A characteristic free surface movement of 20mm to 40mm is estimated for the lots classified as Class 'M' in their existing condition.

A characteristic free surface movement of 40mm to 60mm is estimated for the lots classified as Class 'H1' in their existing condition.

The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

If site re-grading works involving cutting or filling are performed after the date of this assessment, the classification may change and further advice should be sought.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the residual clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches:
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;

- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes M, H1, H2 and E sites' including architectural restrictions, plumbing and drainage requirements; and,
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix C.

All structural elements on all lots should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, wet or other potentially deleterious material.

If any localised areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

7.0 Limitations

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete test locations. It should be noted that subsurface conditions between and away from the test locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Shannon Kelly, Ben Edwards, or the undersigned.

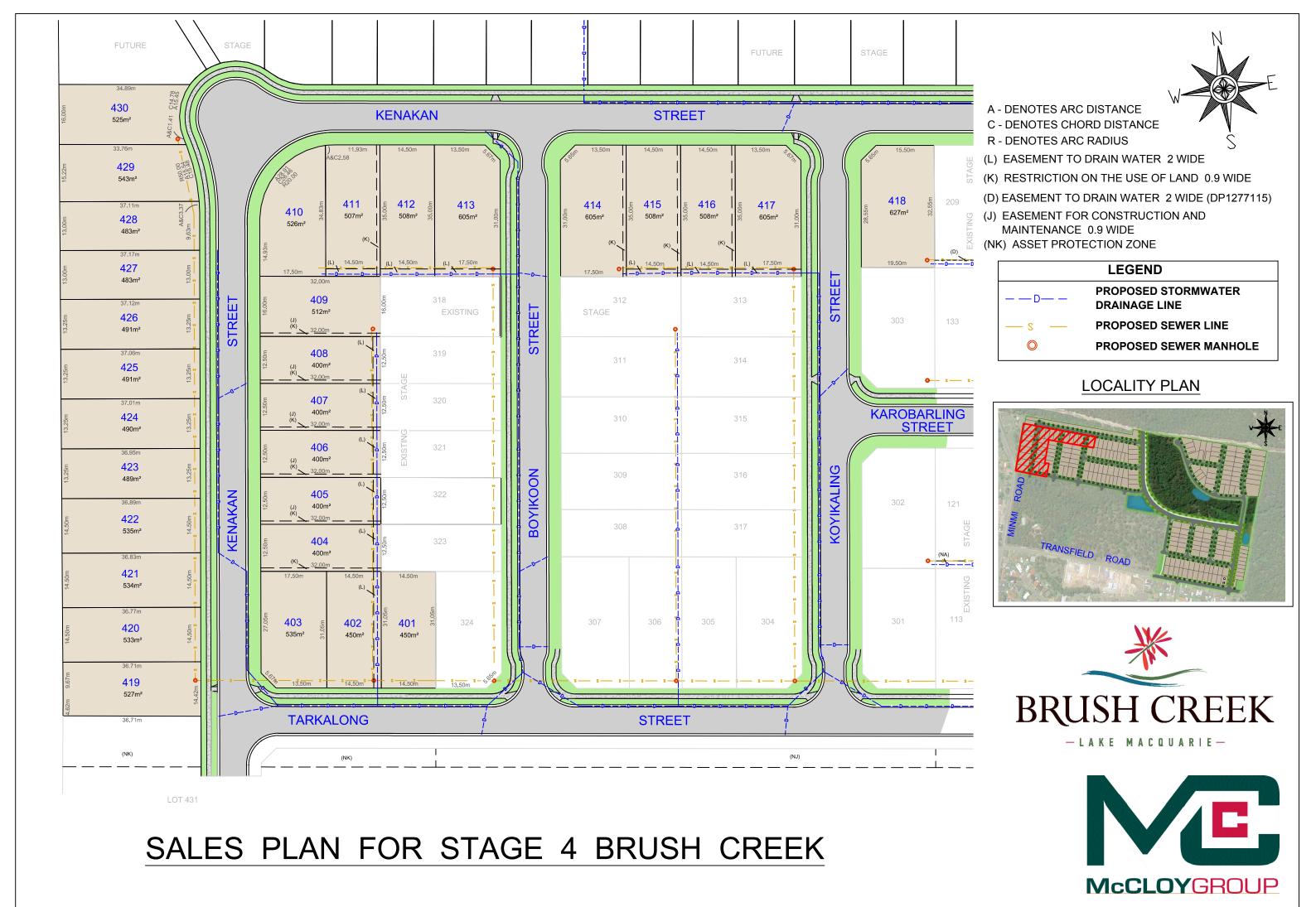
For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

Jason Lee

Principal Geotechnical Engineer

FIGURE AB1:

Site Plan and Approximate Test Locations


SALE PLAN:

Sale Plan for Brush Creek Stage 4

O	ualtest
	LABORATORY (NSW) PTY LTD

Client:	MCCLOY EDGEWORTH PTY LTD	Drawing No:	FIGURE AB1
Project:	BRUSH CREEK ESTATE - PRECINCT 2, STAGE 4	Project No:	NEW18P-0170G
Location:	KENAKAN STREET, EDGEWORTH	Scale:	NOT TO SCALE
Title:	SITE PLAN & APPROXIMATE TEST LOCATIONS	Date:	7/06/2022

APPENDIX A:

Results of Field Investigations

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BOREHOLE NO:

LOGGED BY:

JOB NO: NEW18P-0170G

BH401

ΒE

DATE: 29/4/22

	Drill	ing and Sampl	ing				Material description and profile information				Field	d Test	
METHOD	WATER		RL DEF (m) (n	PTH n)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.50m U50 0.65m 1.10m U50 1.30m		0.5		CL	FILL-TOPSOIL: Sandy CLAY - medium plated dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel. FILL: Gravelly Sandy CLAY - low to medium plasticity, dark grey-brown, fine to coarse grained angular grave sand, fine to coarse grained angular grave 1.00m CLAY - medium to high plasticity, pale grey with some pale orange.	a some ular / J n rained	M > W _P	VSt	HP	340	FILL - TOPSOIL FILL - CONTROLLED RESIDUAL SOIL
				1.5			SANDSTONE - fine to medium grained, pa with pale orange, estimated very low to low Hole Terminated at 1.40 m Practical Refusal		D - M				ROCK
<u>Wat</u>	Wat (Dat Wat Wat Mata Cha	er Level te and time shower Inflower Outflow anges radational or ansitional strata	U ₅₀ CBR E ASS B Field PID	<u>Tests</u> x-y)	Bulk sa Enviror (Glass Acid St (Plastic Bulk Sa Photoic Dynam	Diame ample famenta jar, sea ulfate S bag, a ample onisatio	seter tube sample or CBR testing I sample aled and chilled on site) soil Sample aler sample are expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H F	ncy /ery Soft /oft firm stiff /ery Stiff lard iriable V L	V	25 50 10 20 20 20 ery Lo	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BOREHOLE NO:

LOGGED BY:

JOB NO: NEW18P-0170G

BH402

ΒE

DATE: 29/4/22

	Drill	ling and Sampl	ng			Material description and profile information				Fiel	d Test	
METHOD	WATER		RL DEP	GRAPHIC	CLASSIFICATION	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.40m U50 0.80m		5	CL	FILL: Gravelly Sandy CLAY - low plasticity, trace pale grey and orange, fine to coarse sand, fine to coarse grained angular grave	grained	M < Wp	H/Fb	HP	500	FILL - CONTROLLED
		1.50m D 1.70m		5	CH	CLAY - medium to high plasticity, pale grey brown to brown, trace orange.	r, with pale	M > W _P	VSt	HP HP	300	RESIDUAL SOIL / POSSIBLE FILL-CONTROLLED
						Hole Terminated at 2.00 m						
Wat	Wat (Dal Wat I Wat ta Cha	ter Level te and time show ter Inflow ter Outflow anges rradational or ansitional strata efinitive or distic	U ₅₀ CBR E ASS B Field T PID	50n Bull Env (Gla Acia (Pla Bull ests Pho y) Dyr	k sample rironment ass jar, se d Sulfate astic bag, k Sample otoionisati namic per	eter tube sample for CBR testing al sample ealed and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L	· V	25 50 10 20 20 24 ery Lo	CS (kPa 225 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BH403

ΒE

BOREHOLE NO:

LOGGED BY:

JOB NO: NEW18P-0170G

DATE: 29/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

POPEHOLE DIAMETER: 300 mm

	Dril	ling and Sampl	ing				Material description and profile information				Field	d Test	
МЕТНОБ	WATER		RL DEF (m) (r	PTH m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor component	//particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.50m D 1.00m		1.0		CL CL	FILL-TOPSOIL: Sandy CLAY - medium pladark grey, fine to coarse grained sand, with fine to medium grained angular to sub-angugravel. FILL: Gravelly Sandy CLAY - low plasticity, brown trace orange and pale grey, fine to c grained sand, fine to medium grained sub-angular gravel. Sandy CLAY - medium plasticity, dark grey trace pale grey, fine to coarse grained sand fine to medium grained sub-angular gravel. Hole Terminated at 2.00 m	some ular / — — — — — — — — — — — — — — — — — —	M < W _P	H/Fb	H	480	FILL - TOPSOIL FILL - CONTROLLED RESIDUAL SOIL
Wate	Wat (Da Wat Wat	ter Level te and time show ter Inflow ter Outflow anges	U ₅₀ CBR E vn) ASS		Bulk sa Enviror (Glass Acid Si (Plastic Bulk Si	Diame ample f nmenta jar, se ulfate S bag, a	Ester tube sample or CBR testing al sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V H H Fb F	ery Soft oft irm tiff ery Stiff lard		25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 100	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	tra D	radational or ansitional strata efinitive or distic trata change	PID	(x-y)	Photoic Dynam	ic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D	Lo M	ery Lo oose ledium ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

JOB NO: NEW18P-0170G LOGGED BY: BE

BH404

1 OF 1

29/4/22

BOREHOLE NO:

PAGE:

DATE:

	Drill	ling and Samp	oling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.40m U50 0.60m		- 0. <u>5</u> - 1. <u>0</u> - 1. <u>5</u>		770 G	FILL-TOPSOIL: Sandy CLAY - medium platark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel. FILL: Gravelly Sandy CLAY - low plasticity, brown trace orange and pale grey, fine to grained sand, fine to medium grained sub-angular gravel. 1.20m Gravelly Sandy CLAY - low plasticity, pale fine to coarse grained sand, fine to medium sub-angular gravel.	n some ular — — — — pale coarse angular to	M < Wp	VSt-H	HP	390 400 400 400	FILL - TOPSOIL FILL - CONTROLLED RESIDUAL SOIL / POSSIBLE FILL-CONTROLLED
Wate	Wat (Dat Wat	ter Level te and time sho ter Inflow	own)	2.0 2.0	50mm Bulk s Enviro (Glass Acid S	Diame ample f nmenta jar, se sulfate S	ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample	S S F F St S VSt V	ery Soft oft irm otiff ery Stiff		25 50 10 20	180 CS (kPz 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
Stra	ta Cha G tra De	ter Outflow anges radational or ansitional strata efinitive or disti trata change	.]	B Field Test PID DCP(x-y) HP	Bulk S ss Photoi Dynan	ample onisation	air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	1	lard riable V L MD	Lo N	ery Lo	oose Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH405
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

LOGGED BY: BE **DATE:** 29/4/22

	REH	OLE DIAME		ONNE	300 m		DATU	M:					
	Drill	ing and Samp	ling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel.	some					FILL - TOPSOIL
		0.50m		0.5		CL	FILL: Gravelly Sandy CLAY - low plasticity, brown, trace orange and pale grey, fine to o grained sand, fine to medium grained sub-a angular gravel.	coarse			HP	420	FILL - CONTROLLED
		U50 0.65m		_			0.80m		M < Wp	VSt -	HP	420	
AD/T	Not Encountered			- 1. <u>0</u> -		CL	Gravelly Sandy CLAY - low plasticity, pale te fine to coarse grained sand, fine to medium sub-angular gravel.	orown, grained		Н	HP	400	RESIDUAL SOIL
		1.50m D		- 1. <u>5</u>		CI	1.40m CLAY - medium plasticity, pale brown to grettrace pale grey and orange.	ey-brown	> W _P	VSt	HP	230	
		1.70m		_			1.90m		Σ		HP	210	HIGHLY TO MODERATELY
				2.0			2.00m estimated very low to low strength. Hole Terminated at 2.00 m Practical Refusal		D				WEATHERED ROCK
Wat	Wat (Dat Wat	er Level e and time show er Inflow er Outflow	wn)	Notes, Sar U ₅₀ CBR E	50mm Bulk s Enviro (Glass Acid S	Diame ample f nmenta jar, sea sulfate S	<u>s</u> Eer tube sample or CBR testing I sample aled and chilled on site) ioil Sample iir expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft Stiff /ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
Stra	tra De	anges radational or ansitional strata efinitive or distic rata change		B Field Test PID DCP(x-y) HP	<u>s</u> Photo Dynar	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb F Density	riable V L MD D VD	L() N D	ery Lo oose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

strata change

ENGINEERING LOG - BOREHOLE

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH406

PAGE: 1 OF 1

JOB NO: NEW18P-0170G

BE

LOGGED BY:

VD

Very Dense

Density Index 85 - 100%

DATE: 29/4/22 **DRILL TYPE:** 2.7 TONNE EXCAVATOR SURFACE RL: **BOREHOLE DIAMETER:** 300 mm DATUM: Field Test Drilling and Sampling Material description and profile information CLASSIFICATION SYMBOL CONSISTENCY DENSITY MOISTURE CONDITION GRAPHIC LOG Test Type Structure and additional METHOD WATER Result DEPTH MATERIAL DESCRIPTION: Soil type, plasticity/particle observations SAMPLES (m) (m) characteristics, colour, minor components FILL - TOPSOIL FILL-TOPSOIL: Sandy CLAY - medium plasticity, dark grey, fine to coarse grained sand, with some fine to medium grained angular to sub-angular CI gravel. FILL - CONTROLLED FILL: Gravelly Sandy CLAY - low plasticity, pale brown, trace orange and pale grey, fine to coarse grained sand, fine to medium grained sub-angular to 0.30m ΗP 150 angular gravel. U50 Not Encountered 0.45m 0.5 HP 120 AD/T 0.60m CL St U50 HP 120 0.75m 180 HP Pale brown to grey-brown with pale grey and orange. HIGHLY TO MODERATELY SILTSTONE - pale grey and orange-brown, D estimated very low to low strength. WEATHERED ROCK Hole Terminated at 1.10 m TEST PIT NEW18P-0170G-AB LOGS.GPJ <<DrawingFile>> 07/06/2022 18:10 10.0.000 Datgel Lab and In Situ Tool Refusal 1.5 2.0 LEGEND: Moisture Condition Notes, Samples and Tests Consistency UCS (kPa) Very Soft 50mm Diameter tube sample VS <25 D Dry Water Bulk sample for CBR testing CBR S 25 - 50 Moist Soft М Water Level Ε Environmental sample F Firm 50 - 100 W Wet (Date and time shown) (Glass jar, sealed and chilled on site) St Stiff 100 - 200 W, Plastic Limit Water Inflow ASS Acid Sulfate Soil Sample VSt Very Stiff 200 - 400 W_L Liquid Limit ■ Water Outflow (Plastic bag, air expelled, chilled) Н Hard >400 В Bulk Sample Fb Friable Strata Changes Ę Field Tests **Density** Very Loose Density Index <15% Gradational or PID Photoionisation detector reading (ppm) Loose Density Index 15 - 35% transitional strata DCP(x-y) Dynamic penetrometer test (test depth interval shown) MD Medium Dense Density Index 35 - 65% Definitive or distict HP Hand Penetrometer test (UCS kPa) D Density Index 65 - 85%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 JOB NO: NEW18P-0170G

BH407

ΒE

DATE: 29/4/22

BOREHOLE NO:

LOGGED BY:

	Drill	ing and Samp	oling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang	some					FILL - TOPSOIL
AD/T	Not Encountered	0.40m U50 0.55m		- - 0.5_		CL	FILL: Gravelly Sandy CLAY - low plasticity, brown trace orange and pale grey, fine to grained sand, fine to medium grained subangular gravel.	coarse	M > W _P	VSt	HP	300	FILL - CONTROLLED
				-		GC	Clayey GRAVEL - fine to coarse grained, sub-angular to angular, grey-brown, fines or plasticity, trace fine to coarse grained sand		М	D			RESIDUAL SOIL / POSSIBLE FILL-CONTROLLED
				_	0		0.80m Hole Terminated at 0.80 m Refusal on weathered rock						
				1. <u>0</u>									
				-									
				_									
				1.5									
				_									
				_									
				_									
				2.0_									
				_									
				-									
	SEND:			Notes, Sa				Consiste			_	CS (kPa	
<u>Vat</u>	— Wat (Dat ∙ Wat	er Level te and time sho er Inflow er Outflow	own)	U ₅₀ CBR E ASS	Bulk s Enviro (Glass Acid S	ample f nmenta jar, se sulfate s	ter tube sample or CBR testing all sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V	ery Soft oft irm tiff ery Stiff lard		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	P
<u>Stra</u>	ta Cha G	anges radational or ansitional strata	a	B Field Test PID DCP(x-y)	Bulk S s. Photoi	ample onisatio	on detector reading (ppm) etrometer test (test depth interval shown)	1	riable V L ME	L	ery Lo		Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
		efinitive or disti rata change	UL	HP			ometer test (UCS kPa)		D VD	D	ense ery D		Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH408
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

ΒE

DATE: 29/4/22

LOGGED BY:

	Drill	ing and Samp	oling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel.	n some					FILL - TOPSOIL
		0.30m		-			FILL: Gravelly Sandy CLAY - low plasticity brown trace orange and pale grey, fine to grained sand, fine to medium grained subangular gravel.	coarse			HP	450	FILL - CONTROLLED
		U50 0.45m		0.5_		CL				VSt - H	HP	410	
	þí			-			0.80m CLAY - medium plasticity, pale grey to whi	 te with	_				RESIDUAL SÕIL
AD/ I	Not Encountered	0.90m U50		1. <u>0</u>			orange to red-brown.		M ~ M		HP	280	
	Z	1.15m		-							HP	280	
				1.5_		CI				VSt	HP	320	
				_							HP	320	
\dashv				2.0			2.00m Hole Terminated at 2.00 m						
				-									
				-									
EG	END:		1	Notes, Sar				Consiste				CS (kPa	-
Wate				U ₅₀ CBR			ter tube sample or CBR testing	1	/ery Soft Soft	İ		25 5 - 50	D Dry M Moist
≚ ►	(Dat	er Level e and time sho er Inflow	wn)	E	Enviro (Glass Acid S	nmenta jar, se ulfate S	al sample aled and chilled on site) Soil Sample	F F St S VSt \	irm Stiff /ery Stiff	:	50 10 20	0 - 100 00 - 200 00 - 400	W Wet W _p Plastic Limit
Stro	Wat ta Cha	er Outflow		В	(Plasti Bulk S		air expelled, chilled)	1	lard riable		>4	100	
<u> </u>	Gi	inges radational or insitional strata	1 -	Field Test PID	<u>s</u>	·	on detector reading (ppm)	Density	V L		ery Lo	oose	Density Index <15% Density Index 15 - 35%
		insitional strata efinitive or disti		DCP(x-y)			etrometer test (test depth interval shown)		ME			n Dense	

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH409
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

LOGGED BY: BE **DATE:** 29/4/22

во	REH	OLE DIAM	IETER:	:	300 m	m	DATU	JM:					
	Dril	ling and San	npling				Material description and profile information				Field	d Test	
МЕТНОD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	ъ			_		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang	n some	M > W				FILL - TOPSOIL
AD/T	Not Encountered	0.30m D		_		SP	United Street Silty Sandstone with properties; breaks down into SAND - fine to grained, pale brown.	soil medium	D - M	VD			EXTREMELY WEATHERE ROCK
		0.50m		0.5_			0.60m						
							Hole Terminated at 0.60 m Practical Refusal on weathered rock						
				_									
				-									
				1.0									
				_									
				_									
				-									
				1.5_									
				-									
				_									
				-									
				2.0									
				_									
				_									
				_									
				-									
LEG	END:			Notes, Sa				Consiste		<u> </u>		CS (kPa	-
Wat		er Level		U ₅₀ CBR	Bulk s	ample t	ter tube sample for CBR testing	S S	/ery Soft Soft Firm		25	25 5 - 50 0 - 100	D Dry M Moist W Wet
<u> </u>	(Da	te and time sh ter Inflow	1	E ASS	(Glass	jar, se	al sample aled and chilled on site) Soil Sample	St S	-irm Stiff /ery Stiff		10) - 100)0 - 200)0 - 400	W _p Plastic Limit
Stra		ter Outflow anges		В	(Plasti Bulk S		air expelled, chilled)	H F	lard riable		>4	100	,
	tra	radational or ansitional stra efinitive or dis	ıta	Field Test PID DCP(x-y)	Photoi		on detector reading (ppm) etrometer test (test depth interval shown)	<u>Density</u>	V L ME	Lo	ery Lo oose ledium	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
		rata change	ouot	HP			ometer test (UCS kPa)		D VD	D	ense ery De		Density Index 65 - 85% Density Index 85 - 100%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 JOB NO: NEW18P-0170G

BH410

ΒE

BOREHOLE NO:

LOGGED BY: DATE: 29/4/22

	RILL	OLE DIAN		IONNE :	300 m		DATI	FACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	p			-		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel.	n some	M > W _P				FILL - TOPSOIL
AD/T	Not Encountered	0.40m D 0.60m		- 0. <u>5</u>		CL	Gravelly Sandy CLAY - low to medium plast brown to grey-brown trace pale grey, fine to grained sand, fine to medium grained subgravel.	o coarse	M < W _P	н	HP	520	RESIDUAL SÕIL
				_			0.80m Hole Terminated at 0.80 m Practical Refusal on weathered rock						
Lab and In Situ Tool				1. <u>0</u> -									
ile>> 07/06/2022 18:11 10.0.000 Datgel				1. <u>5</u>									
VEW18P-0170G-AB LOGS.GPJ < <drawingl< td=""><td></td><td></td><td></td><td>2.<u>0</u> -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></drawingl<>				2. <u>0</u> -									
NON-CORED BOREHOL	Wa (Da	ter Level te and time sl ter Inflow ter Outflow	hown)	Notes, Sar U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plast Bulk S	Diame ample f nmenta jar, sea ulfate S	s ter tube sample or CBR testing Il sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V H F	ery Soft oft irm otiff ery Stiff lard		25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 100	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
QT LIB 1.1.GLB L	tr D	radational or ansitional stra efinitive or dis trata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo D D	ery Lo oose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 JOB NO: NEW18P-0170G

BH411

ΒE

BOREHOLE NO:

LOGGED BY: DATE: 29/4/22

	Drill	ing and Sam	pling				Material description and profile information				Fiel	d Test	
МЕТНОБ	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.20m U50 0.35m		-		CI	FILL-TOPSOIL: Sandy CLAY - low to med plasticity, dark grey-brown, fine to coarse g sand, with some fine to medium grained a sub-angular gravel. 0.40m Extremely Weathered Silty Sandstone with	grained ngular to	M ~ W _P	VSt	HP HP	350 380	FILL - CONTROLLED
	ÖZ			0. <u>5</u> -		SP	properties; breaks down into SAND - fine t grained, pale brown.	o medium	D - M	VD			ROCK
				_			Hole Terminated at 0.80 m Practical Refusal on weathered rock						
				1.0_									
				_									
				-									
				-									
				1.5									
				_									
				_									
				-									
				2.0									
				-									
				_									
LEG Wate	END: er			Notes, Sa U ₅₀			<u>s</u> ter tube sample	Consiste VS V	ncy /ery Soft			 CS (kPa 25	Moisture Condition D Dry
	Wat (Dat Wat	er Level e and time sh er Inflow er Outflow	own)	CBR E ASS	Enviro (Glass Acid S (Plasti	nmenta jar, se ulfate s c bag, a	or CBR testing il sample aled and chilled on site) Soil Sample air expelled, chilled)	F F St S VSt V H H	Soft Firm Stiff /ery Stiff lard		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	P P
Stra	G tra	anges radational or ansitional stra efinitive or dis	ta	B Field Test PID DCP(x-y)	Photoi	onisatio	on detector reading (ppm) etrometer test (test depth interval shown)	Fb F <u>Density</u>	riable V L MD	L	ery Lo	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BOREHOLE NO:

LOGGED BY:

JOB NO: NEW18P-0170G

BH412

ΒE

DATE: 29/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

BOREHOLE DIAMETER: 300 mm

во	REH	OLE DIAN	IETER:	:	300 m	m	DATU	JM:					
	Drill	ing and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	untered	0.25m		-		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel.	some	M × W _P				FILL - TOPSOIL
AD/T	Not Encountered	D		-		SP	SAND - fine to medium grained, pale orang pale grey to white, trace grey, trace fines of plasticity.		М	MD - D			RESIDUAL SOIL
		0.45m		0.5_		SP	Extremely Weathered Silty Sandstone with properties; breaks down into SAND - fine to grained, pale brown.		D				EXTREMELY WEATHERED ROCK
				_			Hole Terminated at 0.60 m Practical Refusal on weathered rock						
				-									
				1.0_									
				_									
				-									
				1. <u>5</u>									
				-									
				-									
				2.0_									
				-									
				-									
LEC	SEND:			Notes, Sa	mnles =	nd To-	 	Compiete				CS (kPa	Moisture Condition
<u>Wat</u>	<u>er</u> Wat (Dat - Wat	er Level te and time sl er Inflow	nown)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S	Diame ample to nmenta s jar, se Sulfate S	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample	S S F F St S VSt \	ery Soft Soft Firm Stiff ery Stiff		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	nta Cha G tra	er Outflow anges radational or ansitional stra efinitive or dis	ata	B Field Test PID DCP(x-y)	Bulk S ss Photoi Dynan	Sample ionisationis	on detector reading (ppm) etrometer test (test depth interval shown)	1	lard <u>riable</u> V L MI	Lo O M	ery Lo oose lediun	100 oose n Dense	,
		rata change		HP	Hand	Penetro	meter test (UCS kPa)		D VD		ense ery D	ense	Density Index 65 - 85% Density Index 85 - 100%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 JOB NO:

BOREHOLE NO:

LOGGED BY:

NEW18P-0170G

BH413

ΒE

DATE: 29/4/22

		OLE DIAN		:	300 m		DATU	JM:					
	Drill	ling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Itered	0.40m		-		CI	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang gravel. 0.35m SAND - fine to medium grained, pale orang pale grey to white, trace fines of low plastic	some ular — — — — - le and	M ~ W _P				FILL - TOPSOIL RESIDUAL SOIL
AD/T	Not Encountered	D 0.60m		0. <u>5</u> - -		SP			М	MD - D			
				1.0_		SP	Extremely Weathered Sitty Sandstone with properties; breaks down into SAND - fine to grained, pale brown. 1.10m Hole Terminated at 1.10 m	soil medium	D - M	D			EXTREMELY WEATHERED ROCK
				- 1. <u>5</u> - -			Practical Refusal on weathered rock						
Wat	Wat (Dat Wat Wat	ter Level te and time sl ter Inflow ter Outflow	hown)	2.0	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample i nmenta jar, se ulfate s c bag,	set tube sample for CBR testing Il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H	ery Soft oft irm stiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
Stra	G tra D	anges iradational or ansitional stra efinitive or dis trata change	ata	B Field Test PID DCP(x-y) HP	Photoi Dynan	onisati	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb F <u>Density</u>	riable V L ME D VD	Lo N D	ery Lo cose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BH414

ΒE

BOREHOLE NO:

JOB NO: NEW18P-0170G LOGGED BY:

DATE: 29/4/22

	Drill	ing and Sam	oling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.30m D 0.60m		- - 0.5_		CI	FILL-TOPSOIL: Sandy CLAY - medium plat dark grey, fine to coarse grained sand, with fine to medium grained angular to sub-ang vgravel. FILL: Gravelly Sandy CLAY / Clayey Sand - medium plasticity, pale grey-brown, with sorange to red-brown, fine to coarse grainefine to coarse grained angular gravel, trace cobbles.	n some ular GRAVEL some d sand,	M > W _P	VSt	HP		FILL - TOPSOIL FILL - CONTROLLED
				- 1.0_		CI	Gravelly Sandy CLAY - medium plasticity, to grey, with some red-brown, fine to coars sand, fine to medium grained angular grav	e grained			HP HP	350 350	RESIDUAL SOIL / POSSIBLE FILL-CONTROLLED
				1. <u>5</u>			Practical Refusal on weathered rock						
Water Water Level (Date and time shown) Water Inflow Water Outflow Strata Changes Gradational or transitional strata Definitive or distict		Vater Level Vater Inflow Vater Outflow Vater Outflow Vater Outflow Vater Outflow Cardational or transitional strata			50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample fanmenta jar, se sulfate Sc bag, a ample onisatio	er tube sample or CBR testing I sample aled and chilled on site)	S S F F St S VSt V	ncy /ery Soft Soft Stiff /ery Stiff lard -riable V L	· V Le	25 50 10 20 22 ery Lo	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH415

PAGE: 1 OF 1

JOB NO: NEW18P-0170G

ΒE

DATE: 29/4/22

LOGGED BY:

	Drill	ing and Sam	pling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		0.30m U50 0.45m		- 0.5_			FILL: Gravelly Sandy CLAY - medium plasi grey to pale brown trace pale orange, fine t grained sand, fine to medium grained angu	o coarse			HP	380 350	FILL - CONTROLLED
AD/I	Not Encountered			1.0 1.5	1.50m CLAY - medium to high plasticity, pale grey	-brown	M > Wp	VSt	НР	350	RESIDUAL SÕIL 7		
				-		CH CI	with some dark brown. 1.70m Sandy CLAY - medium plasticity, dark grey trace rootlets. 1.90m Sandy SILTSTONE - pale grey to white, es	-brown,	D		HP	230	POSSIBLE FILL-CONTROLLED RESIDUAL SOIL HIGHLY WEATHERED ROCK
				2.0			2.00m very low to low strength. Hole Terminated at 2.00 m						
LEGEND: Water Water Level (Date and time shown)			Notes, Sa U ₅₀ CBR E	50mm Bulk s Enviro	Diame ample t nmenta	ter tube sample for CBR testing al sample	S S	ery Soft Soft irm		<2 25 50	CS (kPa 25 5 - 50 0 - 100	D Dry M Moist W Wet	
Water Inflow Water Outflow Strata Changes Gradational or transitional strata Definitive or distict strata change			Inflow ASS Acid Sulfate S Outflow (Plastic bag, ges B Bulk Sample dational or sitional strata nitive or distict ASS Acid Sulfate S (Plastic bag, B Bulk Sample Field Tests PID Photoionisati DCP(x-y) Dynamic pen			c bag, ample onisationic pen	aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	St Stiff VSt Very Stiff H Hard Fb Friable Density V L MD D		V Lo	100 - 200 200 - 400 >400 Very Loose Loose Medium Dense Dense		W _L Liquid Limit Density Index <15% Density Index 15 - 35%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BH416 PAGE: 1 OF 1

BOREHOLE NO:

JOB NO: NEW18P-0170G

ΒE

LOGGED BY: DATE: 29/4/22

	Drill	ing and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics, colour, minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		0.40m U50 0.60m		- - - 0. <u>5</u>			FILL: Gravelly Sandy CLAY - medium plas grey to pale brown trace pale orange, fine grained sand, fine to medium grained angu	to coarse			HP	380	FILL - CONTROLLED
AD/I	Not Encountered			- - 1. <u>0</u> -		CI			M > W _P	VSt	HP	360	
				1. <u>5</u>			Sandy CLAY - medium plasticity, dark grey fine to coarse grained sand, trace rootlets.		-		HP	340 230	RESIDUAL SOIL
				2.0			2.00m Hole Terminated at 2.00 m						
LEGEND: Water Water Level (Date and time shown) → Water Inflow Water Outflow Strata Changes Gradational or			nd time shown) Inflow ASS Acid Sulfate Soil Sample (Plastic bag, air expelled, chilled) B Bulk Sample				ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H	Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20 20 20	CS (kPa 225 5 - 50 0 - 100 00 - 200 000 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%
transitional strata Definitive or distict strata change					Photoionisation detector reading (ppm) Dynamic penetrometer test (test depth interval shown) Hand Penetrometer test (UCS kPa)			L MD D VD			ense	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

JOB NO: NEW18P-0170G

BH417

1 OF 1

BE

BOREHOLE NO:

LOGGED BY:

PAGE:

DATE: 29/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR SURFACE RL:

	REH	OLE DIAME	Z.7 10 TER:		300 mi		DATI	JM:					
	Drill	ing and Sampl	ing				Material description and profile information			1	Fiel	d Test	
METHOD	WATER		RL D	EPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.50m U50 0.70m		1.5		0	FILL: Gravelly Sandy CLAY - medium plas to brown, trace pale orange and pale grey fine to coarse grained sand, fine to coarse angular gravel. 2.00m Hole Terminated at 2.00 m	to white,	M > Wp	St - VSt	HP HP HP	220 190 200 180 200	FILL - CONTROLLED
Wat	Wat (Dai - Wat I Wat ata Cha G tra	er Level te and time show ter Inflow ter Outflow ter Adational or ansitional strata efinitive or distic	Vn) ASS B Fiel P CD	50 R	Bulk sa Enviro (Glass Acid S (Plastic Bulk S S Photoic Dynam	Diamet ample fonmental jar, sea ulfate S c bag, a ample onisation	er tube sample or CBR testing I sample sled and chilled on site) oil Sample iir expelled, chilled) n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S S S S S S S S S S S S S S S S S S	ency /ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L MC D	V L	25 50 10 20 20 ery Lo	n Dense	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 35 - 65% Density Index 35 - 65% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BOREHOLE NO:

LOGGED BY:

JOB NO: NEW18P-0170G

BH418

BE

DATE: 29/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

	RILL T	OLE DIAME		IONNE	300 m		DATU	FACE RL: JM:					
	Dril	ling and Samp	ling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.50m U50 0.65m		- - 0.5_ - -		CL	FILL: Gravelly Sandy CLAY / Clayey Grave - low plasticity, dark grey-brown, trace pale pale orange, fine to coarse grained sand, f coarse grained angular gravel, trace CLAY trace angular cobbles.	grey and ine to	M < w _P	Fb	HP	550	FILL - CONTROLLED
Datgel Lab and In Situ Tool		1.00m U50 1.15m		1. <u>0</u> -		CI	FILL: Sandy Gravelly CLAY - medium plas brown to grey-brown, fine to coarse grainer fine to medium grained rounded to sub-ang gravel.	d sand, gular	_ w < M	VSt	HP	220	HIGHLY TO MODERATELY
QTLB 1.1.GLB Log NON-CORED BOREHOLE - TEST PIT NEW18P-0170G-AB LOGS.GPJ < <drawingfile>> 0706/2022 18:11 10.0000 Datgel Lab and In Situ Tool</drawingfile>				1. <u>5</u> - 2. <u>0</u>			SANDSTONE - fine grained, pale orange-t-some pale grey to white, estimated low to r-strength. Hole Terminated at 1.47 m Refusal	nedium					WEATHERED ROCK
NT LIB 1.1.GLB Log NON-CORED BOREHOLE - TI		ter Level te and time show ter Inflow ter Outflow anges radational or ansitional strata efinitive or distic rata change	wn)	Notes, Sai U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photoi Dynan	Diamel ample for nmenta i jar, sea culfate S c bag, a ample onisation	er tube sample or CBR testing I sample aled and chilled on site) ioil Sample iir expelled, chilled) In detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H H	irens Soft irens Soft irm ctiff irens Stiff irens Stiff lard riable V L MC D VD	V Lc) M D	25 50 10 20 20 20 ery Lo	n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH419
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

LOGGED BY: BE **DATE:** 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR SURFACE RL:

Dril	ling and Sam	pling				Material description and profile information				Field	d Test	
WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle tts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	0.20m U50 0.35m		- - 0.5_			to brown, trace pale orange and pale grey	to white,			HP	180 - 220	FILL - CONTROLLED
Not Encountered			1.0 -		С			M > W _P	St	HP	150	
	1.50m D 1.70m		- 1. <u>5</u> - - - 2.0		СН	brown, trace orange.	y and pale	_	VSt	HP	300	RESIDUAL SOIL — — — —
(Da - Wat • Wat • G	te and time sho ter Inflow ter Outflow anges	own)	Notes, Sal U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	nd Test Diame ample f nmenta ; jar, se ; ulfate S c bag, a ; ample	Hole Terminated at 2.00 m Set tube sample for CBR testing is sample aled and chilled on site) soil Sample air expelled, chilled)	VS V S S F F St S VSt V	Very Soft Soft Firm Stiff Very Stiff Hard Friable	V	25 50 10 20 >2 ery Lo	25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	REH Drill Stee (NATER On Stee Control of Stee	Drilling and Sam O.20m U50 0.35m O.35m D 1.50m D 1.70m D 1.70m D 1.70m Gradational or Gradational or	Drilling and Sampling Came Came	Drilling and Sampling SAMPLES RL O.20m U50 O.35m U50 O.35m I.50m I.50m I.70m I	DEPTH (m) DEPTH	Drilling and Sampling SAMPLES RL (m) DEPTH (m)	DATI Drilling and Sampling Material description and profile information Material description Material	Drilling and Sampling Material description and profile information FILL Gravelly Sandy CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale grey and pale brown, trace orange. CLAY - medium to high plasticity, pale g	Datum: D	Datum: D	Description and Sampling	Page Page

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BH420 PAGE: 1 OF 1

BOREHOLE NO:

JOB NO: NEW18P-0170G

LOGGED BY: ΒE DATE: 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR SURFACE RL:

			YPE: OLE DIAM		IONNE :	300 m		DATU	FACE RL: JM:					
		Drill	ing and San	npling				Material description and profile information				Field	d Test	
	METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
QT LIB 1.1.GLB Log NON-CORED BOREHOLE - TEST PIT NEW18P-0170G-AB LOGS.GPJ <-DrawingFile>> 07/06/2022 18:11 10.0.000 DatgeLab and in Situ Tool	AD/T	Not Encountered	0.30m U50 0.45m		1.5		G	FILL: Gravelly Sandy CLAY - medium plast to brown trace pale orange and pale grey to fine to coarse grained sand, fine to coarse angular gravel. Sandy CLAY - low plasticity, brown, fine grassand, trace rootlets. SANDSTONE - fine grained, pale orange-b some pale grey to white, estimated low to ristrength. Hole Terminated at 1.42 m Refusal	ained	M > Wp	St	HP		COLLUVIUM HIGHLY TO MODERATELY WEATHERED ROCK
NON-CORED BOREHOLE - TI	Wate	Wat (Dat Wat Wat	er Level te and time sl ter Inflow ter Outflow	nown)	Notes, Sal U ₅₀ CBR E	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, sea sulfate S c bag, a	s ter tube sample or CBR testing I sample aled and chilled on site) ioil Sample air expelled, chilled)	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
QT LIB 1.1.GLB Log	Stra	G tra — D	anges radational or ansitional stra efinitive or dis rata change	ıta	B Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb F Density	riable V L ME D VD	Lo M D	ery Lo oose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

LOGGED BY: BE **DATE**: 12/4/22

BH421

1 OF 1

NEW18P-0170G

BOREHOLE NO:

PAGE:

JOB NO:

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

	Drill	ing and Sam	pling				DATU Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.40m U50 0.55m		- - 0. <u>5</u>		CI	FILL: Gravelly Sandy CLAY - medium plast to brown trace pale orange and pale grey to fine to coarse grained sand, fine to coarse angular gravel.	o white,	M > W _P	St	HP HP	200 180	FILL - CONTROLLED
				-		CL	Sandy Gravelly CLAY - low plasticity, brown medium grained angular to sub-angular grato coarse grained (mostly fine grained) san	vel, fine	M < W _P	H / Fb			COLLUVIUM
				1.0 - - 1.5 - - 2.0			SANDSTONE - fine grained, pale orange-b some pale grey to white, estimated low to r strength. Hole Terminated at 0.97 m Refusal	rown with nedium	D C				HIĞHLY TO MÖDERATEL
Wate	Wat (Dat Wat Wat ta Cha	er Level te and time sho er Inflow er Outflow anges radational or	own)	Notes, Sal U ₅₀ CBR E ASS B Field Test	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se sulfate s c bag, a ample	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable V	V	25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	_ D	ansitional strata efinitive or disti rata change		DCP(x-y) HP	Dynan	nic pen	or detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		ME D VD) M D		n Dense	•

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

LOGGED BY: BE

BH422

1 OF 1

12/4/22

NEW18P-0170G

BOREHOLE NO:

PAGE:

JOB NO:

DATE:

			YPE: OLE DIAN		TONNE	EXCA' 300 m		R SUR Dati	FACE RL: JM:					
T		Drill	ing and San	npling				Material description and profile information				Field 7	Test	
	METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	AD/T	Not Encountered	0.30m U50 0.45m		- - - 0.5_		CI	FILL: Gravelly Sandy CLAY - medium plas to brown trace pale orange and pale grey tine to coarse grained sand, fine to coarse angular gravel.	o white, grained	M > W _P	St			FILL - CONTROLLED
QT LIB 1.1.GLB Log NON-CORED BOREHOLE - TEST PIT NEW18P-0170G-AB LOGS.GPJ < <drawningfile>> 07/06/2022 18:11 10.0.000 Datget Lab and In Situ Tool</drawningfile>					1.0			SANDSTONE - fine grained, pale orange-l some pale grey to white, estimated low to strength. Hole Terminated at 0.51 m Refusal	nedium	B				HIGHLY TO MODERATELY WEATHERED ROCK
1.GLB Log NON-CORED BOREHOLE	Wate	Wat (Dat Wat Wat ta Cha	er Level te and time si er Inflow er Outflow anges radational or ansitional stra	hown)	Notes, Sal U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk si Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, sea ulfate S c bag, a ample onisatio	E er tube sample or CBR testing sample sample sample sled and chilled on site) oil Sample ir expelled, chilled) In detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt V	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L MD	Vé Lo	<25 25 - 50 - 100	50 100 - 200 - 400 0	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
OT LIB			efinitive or dis rata change	Jaot	HP //			meter test (UCS kPa)		D VD	De	ense ery Dens		Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH423
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

ΒE

DATE: 12/4/22

LOGGED BY:

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

POPELIOLE DIAMETER: 200 mm

ВО	REH	OLE DIAME	ETER:		300 m	m	DATE	JM:					
	Drill	ling and Sam	pling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	iy/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m U50 0.35m		-		CI	FILL: Gravelly Sandy CLAY - medium plas to brown trace pale orange and pale grey the fine to coarse grained sand, fine to coarse angular gravel. 0.40m 0.40	o white, grained	M > W _P	St			FILL - CONTROLLED
				0.5_			SANDSTONE - fine grained, pale orange-l some pale grey to white, estimated low to i strength. Hole Terminated at 0.42 m Refusal	prown with medium	D				HIGHLY TO MODERATELY WEATHERED ROCK
Wat	Wat (Dat - Wat	ter Level te and time sho ter Inflow ter Outflow anges	own)	Notes, Sai U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	<u>s</u> Ler tube sample Lor CBR testing I sample Saled and chilled on site) Sample Sample Sample	S S F F St S VSt V	ncy /ery Soft Soft Stiff /ery Stiff Hard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional strata efinitive or disti rata change	a	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MC D VD	Lo M De	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1

BOREHOLE NO:

JOB NO: NEW18P-0170G

BH423A

LOGGED BY: BE **DATE:** 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

во	REH	OLE DIAMI	ETER:		300 m	m	DATU	JM:					
	Drill	ing and Sam	pling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			_		CI	FILL-TOPSOIL: Gravelly Sandy CLAY - lov dark grey-brown, fine to coarse grained sa grained angular to sub-angular gravel. Sandy Gravelly CLAY - low plasticity, brow	nd, fine	_				FILL - CONTROLLED COLLUVIUM
٧	Not E			_		CL	medium grained angular to sub-angular grato coarse grained (mostly fine grained) san	avel, fine ıd. — — — —	Σ	VSt	HP	150	
				_			SANDSTONE - fine grained, pale orange-to- some pale grey to white, estimated low to re- strength. Hole Terminated at 0.31 m	prown with medium					HIGHLY TO MODERATELY WEATHERED ROCK
				0.5_			Refusal						
				_									
				_									
				1. <u>0</u>									
				-									
				_									
				1.5									
				_									
				_									
				_									
				2.0_									
				_									
				_									
Wat		er Level		Notes, Sai U ₅₀ CBR	50mm Bulk s	Diame ample f	er tube sample or CBR testing	s s	ery Soft		<2 25	CS (kPa 25 5 - 50	D Dry M Moist
	(Dat Wat	e and time sho er Inflow er Outflow	´1	E ASS	(Glass Acid S	jar, se ulfate S	l sample aled and chilled on site) ioil Sample sir expelled, chilled)	St S VSt V	irm Stiff ery Stiff lard		10 20) - 100)0 - 200)0 - 400 100	-
	ita Cha			B Field Test PID	Bulk S	ample	on detector reading (ppm)	1	riable V L		ery Lo		Density Index <15% Density Index 15 - 35%
_	_ D	efinitive or dist rata change	l 1	DCP(x-y) HP	Dynan	nic pen	etrometer test (test depth interval shown) meter test (UCS kPa)		ME D VD	D	ledium ense ery De	n Dense ense	-

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH424

PAGE: 1 OF 1

JOB NO: NEW18P-0170G

ΒE

DATE: 12/4/22

LOGGED BY:

DRILL TYPE: 2.7 TONNE EXCAVATOR
BOREHOLE DIAMETER: 300 mm

DATUM:

	Drill	ing and Samp	ling				Material description and profile information				Field	d Test	
MEIHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			-		SP	Extremely Weathered Sandstone with soil breaks down into SAND - fine to coarse graorange and pale grey-brown.	ained, pale	D - M	VD			EXTREMELY WEATHERE ROCK
				0.5 - 1.0 1.5 - 2.0			SANDSTONE - fine grained, pale orange-b some pale grey to white, estimated low to r strength. Hole Terminated at 0.36 m Refusal	nedium					WEATHERED ROCK
Wate	Wat (Dat Wat Wat	er Level e and time sho er Inflow er Outflow	wn)	Notes, Sar U ₅₀ CBR E	50mm Bulk sa Enviro (Glass Acid S (Plasti	Diame ample funmenta i jar, se sulfate S	ter tube sample or CBR testing al sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V	ery Soft Soft Firm Stiff ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
stra	G tra D	anges radational or ansitional strata efinitive or distic rata change	<u> </u>	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	riable V L MD D	L(ery Lo oose lediun ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: BH425
PAGE: 1 OF 1

JOB NO: NEW18P-0170G

LOGGED BY: BE

DATE: 12/4/22

		TYPE: OLE DIAN		TONNE !:	EXCA 300 m		R SUR Dat	FACE RL: UM:					
	Dril	ling and San	npling				Material description and profile information				Field	Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastic characteristics,colour,minor componer	ity/particle nts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			-		SP	Extremely Weathered Sandstone with soil breaks down into SAND - fine to coarse grorange and pale grey-brown.	properties; rained, pale	D - M	VD			EXTREMELY WEATHERED ROCK
				0.5_			SANDSTONE - fine grained, pale orange- some pale grey to white, estimated low to strength. Hole Terminated at 0.36 m Refusal		D				HIGHLY TO MODERATELY WEATHERED ROCK
1001				1.0_									
ייטעבעב וסיון וסיטיסט במעשמו במב מות וויט				- 1. <u>5</u>									
				2.0_ -									
Mai	Wai (Da - Wai ¶ Wai ata Ch G tr: D	ter Level te and time si ter Inflow ter Outflow anges irradational or ansitional stra efinitive or dis trata change	ata	Notes, Sai U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S s Photo Dynar	Diamet ample for nomenta s jar, sea Sulfate S c bag, a sample sonisationic pene	er tube sample or CBR testing sample sample sled and chilled on site) oil Sample ir expelled, chilled) n detector reading (ppm) trometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt \	ency /ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L MD D VD	M D	<25 25 - 50 - 100 200 >40 ery Locoose	- 50 - 100 0 - 200 0 - 400 00 ose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 JOB NO: NEW18P-0170G

BH426

ΒE

BOREHOLE NO:

LOGGED BY: DATE: 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR SURFACE RL:

	Drill	ling and Sampl	ing				Material description and profile information				Field	d Test	
METHOD	WATER		RL DEF (m) (n	PTH n)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastic characteristics,colour,minor componer	ty/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	ered	0.10		X		CI	FILL: Gravelly Sandy CLAY - medium plas						FILL - CONTROLLED
AD/T	Not Encountered	0.10m U50 0.22m				СН	grey-brown and orange, line to coarse gra fine to coarse grained angular gravel. CLAY - medium to high plasticity, grey and	/		VSt	HP HP	220 300	RESIDUAL SOIL
				1.0			SANDSTONE - fine grained, pale orange- some pale grey to white, estimated low to strength. Hole Terminated at 0.36 m Refusal						WEATHERED ROCK
Wate	Wat (Dat Wat Wat	ter Level te and time show ter Inflow ter Outflow anges	U ₅₀ CBR E		Bulk sa Enviror (Glass Acid Su	Diamet ample for amenta jar, sea ulfate S bag, a	s ter tube sample or CBR testing Il sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft Firm Stiff /ery Stiff Hard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional strata efinitive or distic rata change	Field PID	Tests (x-y)	Photoic Dynam	onisatio ic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MD	Lo M	ery Lo oose lediun ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 **JOB NO:** NEW18P-0170G

BH427

LOGGED BY: BE **DATE:** 12/4/22

BOREHOLE NO:

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

POPEHOLE DIAMETER: 300 mm

	Drill	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.50m		- - - 0.5_		CL	Extremely Weathered Sandstone with soil breaks down into Sandy CLAY - low to me plasticity, pale grey to white and orange, fil sand, trace highly weathered rock pockets	dium ne grained	M < Wp	н	HP	>600	EXTREMELY WEATHERS ROCK
		0.80m		1. <u>0</u>			1.10m 3.112m SANDSTONE - fine grained, pale orange-l some pale grey to white, estimated low to strength.		D		HP	>600	HIGHLY TO MODERATE
				1. <u>5</u>			Hole Terminated at 1.12 m Refusal						
				- - 2. <u>0</u>									
				-									
Wate	Wat (Dat Wat Wat	ter Level te and time sh ter Inflow ter Outflow tanges	own)	Notes, Sar U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se ulfate \$	s ter tube sample or CBR testing Il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft Firm Stiff /ery Stiff lard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional stra efinitive or dis rata change		PID DCP(x-y)	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo D D	ense	n Dense	Density Index <15% Density Index 15 - 35% e Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

BOREHOLE NO: **BH428**

PAGE: 1 OF 1

JOB NO:

LOGGED BY: ΒE

NEW18P-0170G

DATE: 12/4/22

		YPE: OLE DIAN		TONNE	EXCA 300 m		R SURF	ACE RL:					
	Drilling and Sampling				Material description and profile information						Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		CL	TOPSOIL: Sandy CLAY - low plasticity, dar grey-brown, fine to medium grained sand, raffected.						TOPSOIL
AD/T	Not Encountered	0.30m U50 0.42m		- 0. <u>5</u> -		CL	Sandy CLAY - low plasticity, pale grey with orange, fine to medium grained sand.	pale	M < W _p	H/Fb		>600	RESIDUAL SOIL
OT LB 1.1.G.B. Log NON-CORED BORRHOLE - TEST PIT NEW18P-0170G-AB LOGS GPJ <-DrawingFile>> 07/06/2022 18:11 10.0.000 Datget Lab and in Situ Tool				- 1.5 			SANDSTONE - fine grained, pale orange-b some pale grey to white, estimated low to r strength. Hole Terminated at 0.76 m Refusal	rown with nedium	D				HIGHLY TO MODERATELY WEATHERED ROCK
LEC Wa Wa Stra	Wat (Da - Wat Wat Mata Ch G G	ter Level te and time si ter Inflow ter Outflow anges radational or ansitional stra	ata	Notes, Sa U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta s jar, se Sulfate S ic bag, a Sample	s er tube sample or CBR testing I sample aled and chilled on site) oil Sample iir expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt \	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable V L ME	Ve Lo	<2 25 50 10 20 >4 ery Lo	6 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	—— Definitive or distict strata change				HD Hand Ponetrometer test (LICS kPa)						ense ery De	ense	Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

JOB NO: NEW18P-0170G

BH429

1 OF 1

ΒE

BOREHOLE NO:

LOGGED BY:

PAGE:

DATE: 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR

SURFACE RL:

ВС	REH	OLE DIAMI	ETER:		300 m	m	DATU	JM:					
	Drilling and Sampling						Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m D				SC CL	TOPSOIL: Clayey SAND - fine grained, gre low plasticity, root affected. 0.20m Sandy CLAY - low plasticity, pale grey, trac to red-brown, fine to coarse grained sand, to medium grained angular to sub-angular	— — — — e orange trace fine	M ~ Wp	Н			TOPSOIL COLLUVIUM / RESIDUAL SOIL
NON-LOKED BUYER-FOLE: TEST PIT NEW 18P-01 / 70G-AB LOGS. G-7 << Drawing Pies> 07/09/2022 18:11 10.0.000 Dagget as and in Situ 1801		0.50m		0.5 - 1.0 - 1.5 - 2.0			SANDSTONE - fine grained, pale orange-to-some pale grey to white, estimated low to restrength. Hole Terminated at 0.51 m Refusal	prown with nedium	D				HIGHLY TO MODERATELY WEATHERED ROCK
	Wat (Da - Wat	er Level te and time sho er Inflow er Outflow	own)	Notes, Sar U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample to nmenta s jar, se sulfate s c bag,	Ester tube sample or CBR testing Il sample Soil Sample Soil Sample alse sample	S S F F St S VSt V	/ery Soft Soft Firm Stiff /ery Stiff		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
OI LIB 1.1.GLB LOG	Strata Changes — Gradational or transitional strata — Definitive or distict strata change			Gradational or transitional strata Definitive or distict DEPLOY: Field Tests PID Photoionisation PID Photoionisation PID Photoionisation PID P			on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density V V L L L MD M			ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY EDGEWORTH PTY LTD

PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 4

LOCATION: KENAKAN STREET, EDGEWORTH

PAGE: 1 OF 1 **JOB NO**: NEW18P-0170G

BH430

ΒE

BOREHOLE NO:

LOGGED BY:

DATE: 12/4/22

DRILL TYPE: 2.7 TONNE EXCAVATOR SURFACE RL:

во	REH	OLE DIAM	ETER	:	300 m	m	DATU	JM:					
	Drilling and Sampling						Material description and profile information	, , ,			Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			-		SP	FILL: Gravelly SAND - fine to coarse graine grey, fine to medium grained sub-angular goods. 0.30m FILL: Sandy GRAVEL - fine to medium grained angular, brown, fine to coarse grained sand	ravel. ined	- М				FILL - UNCONTROLLED
	2	0.60m 0.65m		0. <u>5</u>		GP CL	0.60m 0.65m Sandy CLAY / Clayey SAND - low plasticity 0.65m grey, trace orange to red-brown, fine to coa	— — — — , pale arse		Н	HP	420	RESIDUAL SÕIL / POSSIBLE COLLUVIUM
LEG Wat				1.0			grained sand, fine to medium grained angusub-angular gravel. SANDSTONE - fine to medium grained, pa with pale orange, estimated low to medium Hole Terminated at 0.66 m Refusal	llar to - — — — le grev					SLIGHTLY WEATHERED ROCK
Wat	▼ Water Level CBR Bu (Date and time shown) E E Er				50mm Bulk s Enviro (Glass	Diame ample t nmenta jar, se	ter tube sample for CBR testing al sample aled and chilled on site)	S S F F St S	ery Soft Soft Firm Stiff		<2 25 50 10	CS (kPa 25 5 - 50 0 - 100 00 - 200	D Dry M Moist W Wet W _p Plastic Limit
	■ Water Inflow ■ Water Outflow Strata Changes ■ Gradational or transitional strata ■ Definitive or distict strata change			Vater Inflow Vater Outflow Changes Gradational or transitional strata Definitive or distict Vater Outflow (Plastic bag, B Bulk Sample Field Tests) PID Photoionisati DCP(x-y) Dynamic per			on Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	VSt Very Stiff H Hard Fb Friable Density V V L L MD M D D			ery Lo	n Dense	Density Index <15% Density Index 15 - 35%

APPENDIX B:

Results of Laboratory Testing

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S02

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

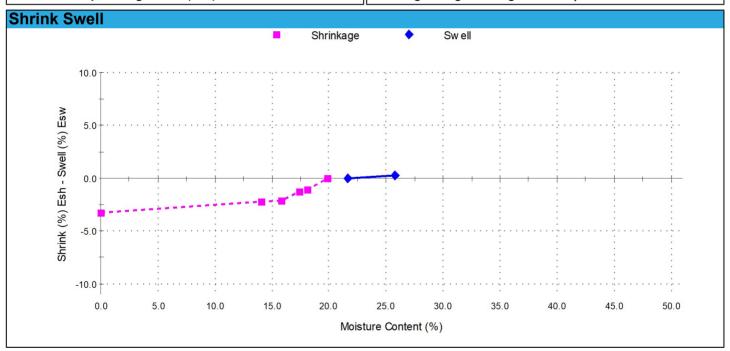
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S02


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH401 - (1.10 - 1.30m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): 0.3 3.3 Moisture Content before (%): Shrinkage Moisture Content (%): 19.9 21.7 Moisture Content after (%): Est. inert material (%): 25.8 Est. Unc. Comp. Strength before (kPa): 400 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Major

Shrink Swell Index - Iss (%): 1.9

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S03

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

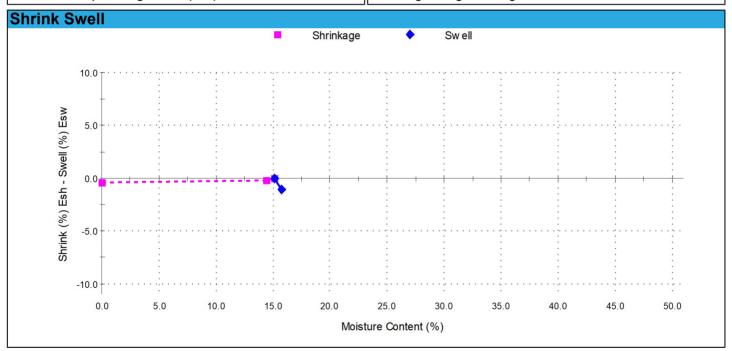
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S03


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH404 - (0.40 - 0.60m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -1.0 0.4 Moisture Content before (%): Shrinkage Moisture Content (%): 15.1 15.1 Moisture Content after (%): Est. inert material (%): 15.7 Est. Unc. Comp. Strength before (kPa): 500 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.2

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S04

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

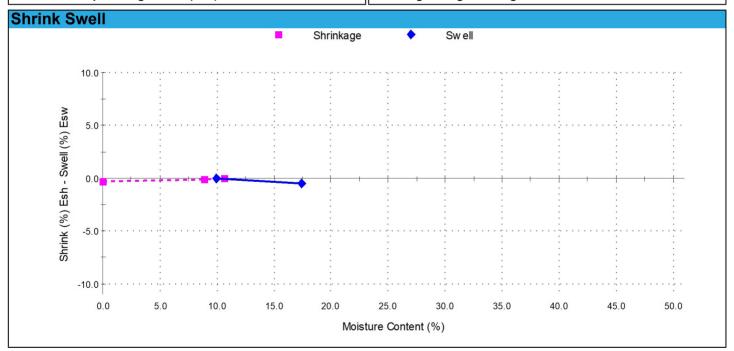
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S04


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH405 - (0.50 - 0.65m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.5 0.3 Moisture Content before (%): Shrinkage Moisture Content (%): 10.7 9.9 Moisture Content after (%): Est. inert material (%): 17.4 3% Est. Unc. Comp. Strength before (kPa): 450 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 0.1

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S05

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

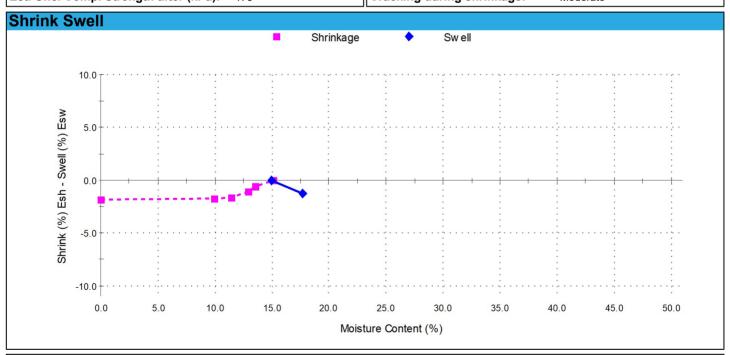
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S05


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH406 - (0.30 - 0.45m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -1.3 18 Moisture Content before (%): Shrinkage Moisture Content (%): 15.1 14.9 Moisture Content after (%): Est. inert material (%): 17.7 Est. Unc. Comp. Strength before (kPa): 400 Crumbling during shrinkage: Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Moderate

Shrink Swell Index - Iss (%): 1.0

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S06

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen

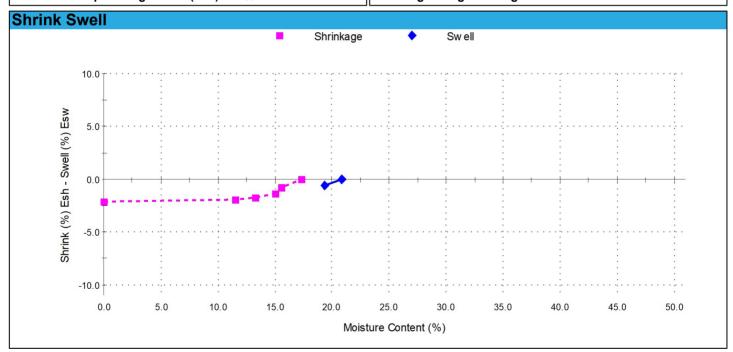
(Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S06


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH406 - (0.60 - 0.75m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.6 2.1 Moisture Content before (%): Shrinkage Moisture Content (%): 17.3 20.8 Moisture Content after (%): Est. inert material (%): 19.3 Est. Unc. Comp. Strength before (kPa): 250 Crumbling during shrinkage: Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Moderate

Shrink Swell Index - Iss (%): 1.2

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S07 Issue No: 1

ACCREDITATION

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen

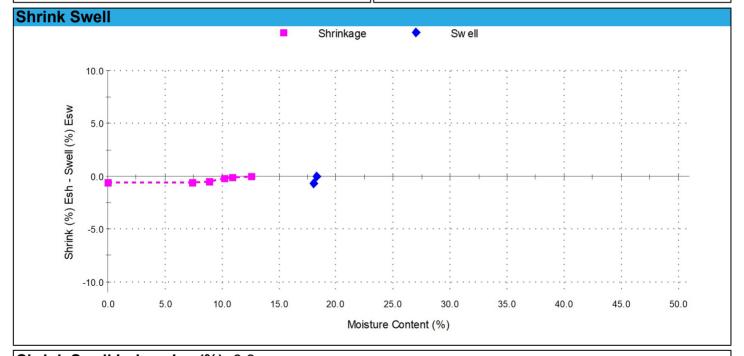
(Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S07


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH407 - (0.40 - 0.55m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): 0.6 -0.7 Moisture Content before (%): Shrinkage Moisture Content (%): 12.6 18.3 Moisture Content after (%): Est. inert material (%): 18.1 Est. Unc. Comp. Strength before (kPa): 280 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.3

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S08

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

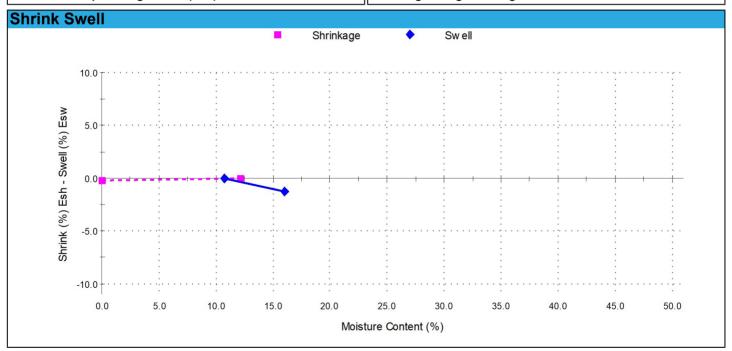
Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S08


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH408 - (0.30 - 0.45m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -1.3 0.2 Moisture Content before (%): Shrinkage Moisture Content (%): 12.1 10.7 Moisture Content after (%): Est. inert material (%): 16.0 1% Est. Unc. Comp. Strength before (kPa): 400 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.1

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S09

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

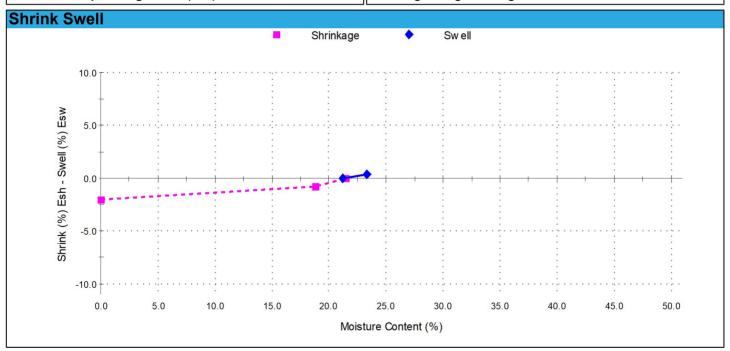
Approved Signatory: Brent Cullen

(Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S09


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH408 - (0.90 - 1.15m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): 0.4 2.0 Moisture Content before (%): Shrinkage Moisture Content (%): 21.5 21.2 Moisture Content after (%): Est. inert material (%): 23.3 Est. Unc. Comp. Strength before (kPa): 450 Crumbling during shrinkage: Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Moderate

Shrink Swell Index - Iss (%): 1.2

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: SSI:NEW22W-1294-S10

Issue No: 1

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

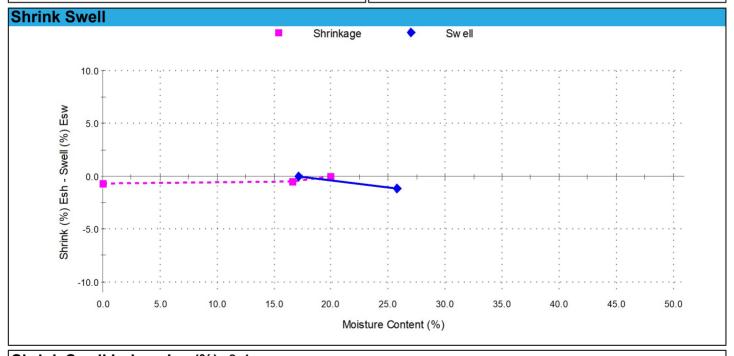
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S10


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 Sandy Clay Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH411 - (0.20 - 0.35m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -1.2 0.7 Moisture Content before (%): Shrinkage Moisture Content (%): 20.0 17.1 Moisture Content after (%): Est. inert material (%): 25.7 Est. Unc. Comp. Strength before (kPa): 400 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.4

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S12

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

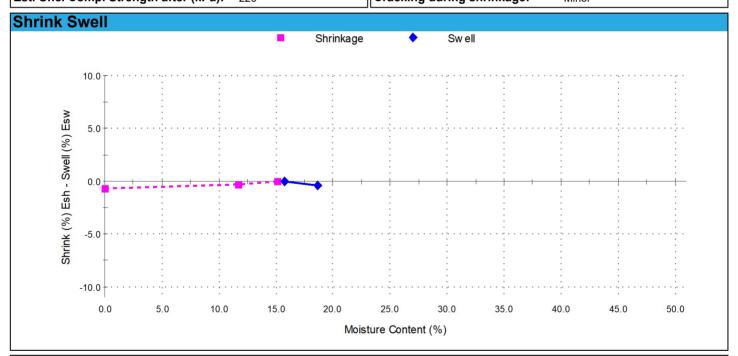
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S12


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH416 - (0.40 - 0.60m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.4 0.7 Moisture Content before (%): Shrinkage Moisture Content (%): 15.1 15.8 Moisture Content after (%): Est. inert material (%): 18.7 Est. Unc. Comp. Strength before (kPa): 300 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.4

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S13

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

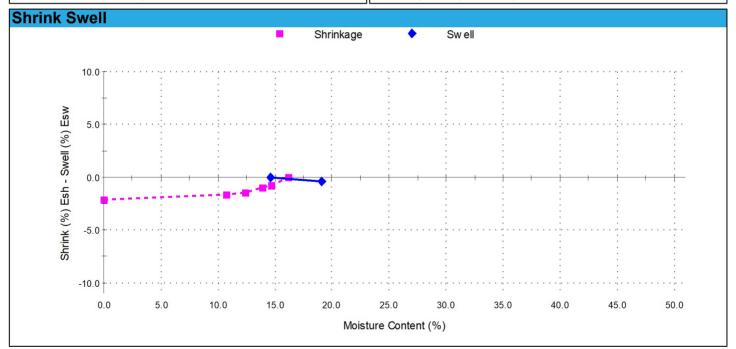
Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S13


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH417 - (0.50 - 0.70m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.4 2.1 Moisture Content before (%): Shrinkage Moisture Content (%): 16.2 14.6 Moisture Content after (%): Est. inert material (%): 19.1 5% Est. Unc. Comp. Strength before (kPa): 540 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 1.2

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S14

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

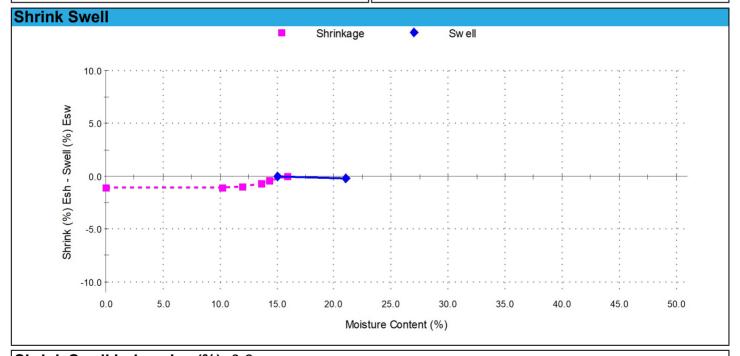
Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S14


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH418 - (0.50 - 0.65m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.2 1.1 Moisture Content before (%): Shrinkage Moisture Content (%): 15.9 15.1 Moisture Content after (%): Est. inert material (%): 21.0 5% Est. Unc. Comp. Strength before (kPa): 480 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.6

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S15

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

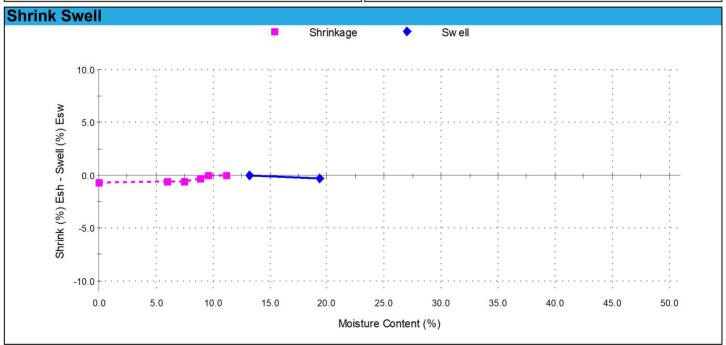
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S15


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH418 - (1.00 - 1.15m)

Date Tested: 24/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.3 0.7 Moisture Content before (%): Shrinkage Moisture Content (%): 11.2 13.2 Moisture Content after (%): Est. inert material (%): 19.3 3% Est. Unc. Comp. Strength before (kPa): 500 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 0.4

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Report No: SSI:NEW22W-1294-S16

Issue No: 1

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

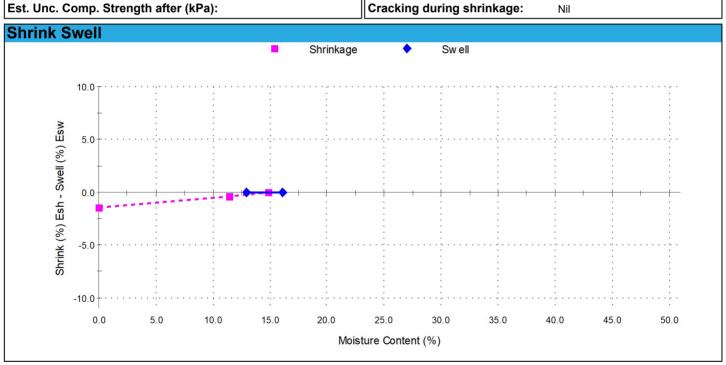
Sample ID: NEW22W-1294-S16

Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH419 - (0.20 - 0.35m)

Date Tested: 23/05/2022


Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1

Swell on Saturation (%): 0.0 Moisture Content before (%): 12.9 Moisture Content after (%): 16.1 Est. Unc. Comp. Strength before (kPa):

Shrink on drying (%): 15 Shrinkage Moisture Content (%): 14.9

Est. inert material (%):

Crumbling during shrinkage: Nil Cracking during shrinkage: Nil

Shrink Swell Index - Iss (%): 0.8

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S17

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

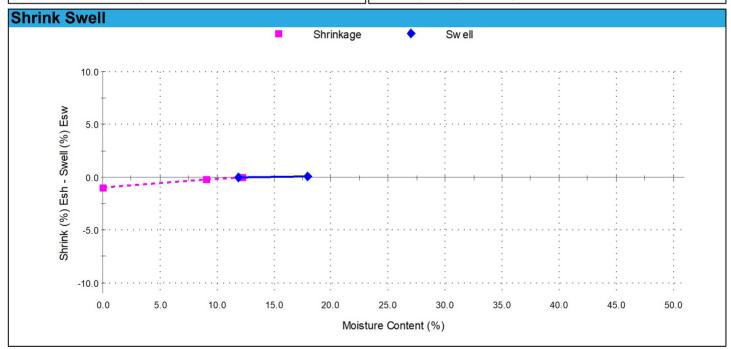
Approved Signatory: Brent Cullen

(Engineering Geologist) NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S17


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH420 - (0.30 - 0.45m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): 0.1 1.0 Moisture Content before (%): Shrinkage Moisture Content (%): 12.3 11.9 Moisture Content after (%): Est. inert material (%): 17.9 Est. Unc. Comp. Strength before (kPa): 500 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): >600 Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.6

02 4968 4468 02 4960 9775

E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S19

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen

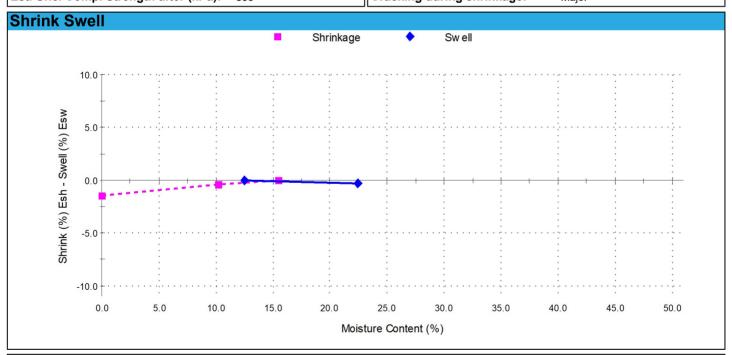
(Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S19


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH422 - (0.30 - 0.45m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.3 1.5 Moisture Content before (%): Shrinkage Moisture Content (%): 15.5 12.5 Moisture Content after (%): Est. inert material (%): 22 4 Est. Unc. Comp. Strength before (kPa): 500 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Major

Shrink Swell Index - Iss (%): 0.8

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

BLD BECK

ACCREDITATION

Report No: SSI:NEW22W-1294-S20

Shrink Swell Index Report

McCloy Project Management Pty Ltd PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

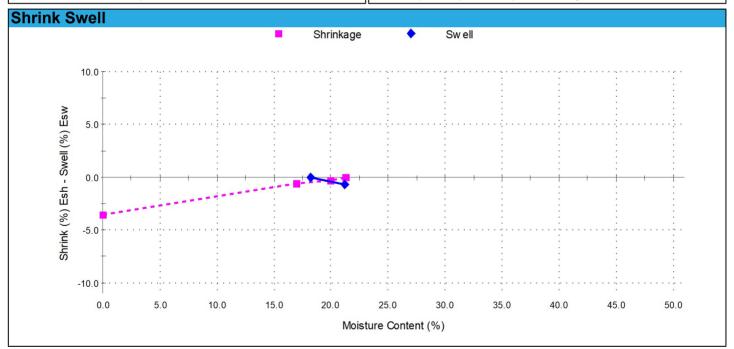
NATA Accredited Laboratory Number: 18686

Issue No: 1

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S20


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 **Gravelly Sandy Clay** Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH423 - (0.20 - 0.35m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.7 3.6 Moisture Content before (%): Shrinkage Moisture Content (%): 21.3 18.2 Moisture Content after (%): Est. inert material (%): 21.2 Est. Unc. Comp. Strength before (kPa): 450 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Major

Shrink Swell Index - Iss (%): 2.0

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Shrink Swell Index Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

NEW18P-0170G Project No.:

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Report No: SSI:NEW22W-1294-S22

Issue No: 1

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen

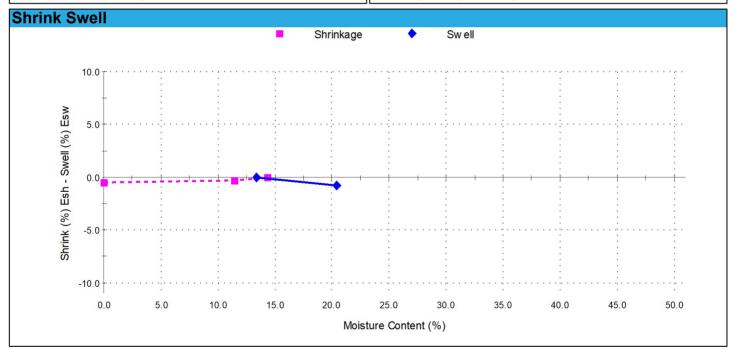
(Engineering Geologist)

NATA Accredited Laboratory Number: 18686

Date of Issue: 31/05/2022

Sample Details

Sample ID: NEW22W-1294-S22


Sampling Method: The results outlined below apply to the sample as received

Material: **Date Sampled:** 12/04/2022 Sandy Clay Source: **Date Submitted:** On-Site Insitu 5/05/2022

Specification: No Specification Sample Location: BH428 - (0.30 - 0.42m)

Date Tested: 23/05/2022

Swell Test AS 1289.7.1.1 **Shrink Test** AS 1289.7.1.1 Swell on Saturation (%): Shrink on drying (%): -0.8 0.5 Moisture Content before (%): Shrinkage Moisture Content (%): 14.3 13.4 Moisture Content after (%): Est. inert material (%): 20.4 1% Est. Unc. Comp. Strength before (kPa): 500 Crumbling during shrinkage: Nil Est. Unc. Comp. Strength after (kPa): Cracking during shrinkage: Minor

Shrink Swell Index - Iss (%): 0.3

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Report No: MAT:NEW22W-1294-S01

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Call

Sample Details

Sample ID: NEW22W-1294-S01

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH401 - (0.50 - 0.65m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 7.0 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 33 Four Point Method Plastic Limit (%) AS 1289.3.2.1 19 Plasticity Index (%) AS 1289.3.3.1 14 **Date Tested** 27/05/2022

Comments

N/A

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S11

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Call Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Sample Details

Sample ID: NEW22W-1294-S11

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH415 - (0.30 - 0.45m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 2.5 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 19 Four Point Method Plastic Limit (%) AS 1289.3.2.1 14 Plasticity Index (%) AS 1289.3.3.1 5 **Date Tested** 27/05/2022

Comments

N/A

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S18

Issue No: 1

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 26/05/2022

18

16

25/05/2022

Call

Sample Details

Sample ID: NEW22W-1294-S18

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH421 - (0.40 - 0.55m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 9.0 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 34 Four Point Method

AS 1289.3.2.1

AS 1289.3.3.1

Comments

Plastic Limit (%)

Date Tested

Plasticity Index (%)

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Report No: MAT:NEW22W-1294-S21

Issue No: 1

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 26/05/2022

Call

Sample Details

Sample ID: NEW22W-1294-S21

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu

Material: Clay

Specification: No Specification

The results outlined below apply to the sample as received

BH426 - (0.10 - 0.22m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 10.0 Mould Length (mm) 250 Crumbling No Curling Yes Cracking No Liquid Limit (%) AS 1289.3.1.1 48 Four Point Method Plastic Limit (%) AS 1289.3.2.1 19 Plasticity Index (%) AS 1289.3.3.1 29 **Date Tested** 25/05/2022

Comments

02 4968 4468 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S23

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Call Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Sample Details

Sample ID: NEW22W-1294-S23

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH402 - (0.40 - 0.80m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 8.5 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 41 Four Point Method Plastic Limit (%) AS 1289.3.2.1 22 Plasticity Index (%) AS 1289.3.3.1 19 **Date Tested** 27/05/2022

Comments

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Report No: MAT:NEW22W-1294-S24

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

27/05/2022

Call

Sample Details

Sample ID: NEW22W-1294-S24

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu

Material:

Specification: No Specification

The results outlined below apply to the sample as received

BH402 - (1.50 - 1.70m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 11.0 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 46 Four Point Method Plastic Limit (%) AS 1289.3.2.1 20 Plasticity Index (%) AS 1289.3.3.1 26

Comments

Date Tested

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

02 4968 4468

Report No: MAT:NEW22W-1294-S25

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Call Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 27/05/2022

Sample Details

Sample ID: NEW22W-1294-S25

Date Sampled: 12/04/2022 Date Received: 05/05/2022 Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH403 - (0.50 - 1.00m) Sample Location:

Test Results Description Method Result Limits Sample History AS 1289.1.1 Oven-dried Preparation Preparation AS 1289.1.1 Dry Sieved Linear Shrinkage (%) AS 1289.3.4.1 7.0 Mould Length (mm) 250 Crumbling No Curling Nο Cracking No Liquid Limit (%) AS 1289.3.1.1 32 Four Point Method Plastic Limit (%) AS 1289.3.2.1 16 Plasticity Index (%) AS 1289.3.3.1 16 **Date Tested** 26/05/2022

Comments

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S26

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd PO Box 2214

Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Sample Details

Sample ID: NEW22W-1294-S26

Date Sampled: 12/04/2022 05/05/2022 **Date Received:** Source: On-Site Insitu

Material: Clay

Specification: No Specification

The results outlined below apply to the sample as received

BH405 - (1.50 - 1.70m) Sample Location:

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	9.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	37	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	18	
Plasticity Index (%)	AS 1289.3.3.1	19	
Date Tested		27/05/2022	

Comments

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S27

Issue No: 1

Material Test Report

McCloy Project Management Pty Ltd

PO Box 2214 Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Call Approved Signatory: Brent Cullen

(Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Sample Details

Sample ID: NEW22W-1294-S27

Date Sampled: 12/04/2022 05/05/2022 **Date Received:** Source: On-Site Insitu Material: Gravelly Sandy Clay Specification: No Specification

The results outlined below apply to the sample as received

BH414 - (0.30 - 0.60m) Sample Location:

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	8.5	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	34	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	18	
Date Tested		27/05/2022	

Comments

02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-1294-S28

Issue No: 1

McCloy Project Management Pty Ltd PO Box 2214

Dangar NSW 2309

Project No.: NEW18P-0170G

Project Name: Brush Creek Subdivision - Precinct 2, Stage 4

Project Location: Bootaring Boulevard, Edgeworth

Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national

Results provided relate only to the items tested or sampled.

Approved Signatory: Brent Cullen (Engineering Geologist)

NATA Accredited Laboratory Number: 18686 Date of Issue: 30/05/2022

Sample Details

Sample ID: NEW22W-1294-S28

Date Sampled: 12/04/2022 05/05/2022 **Date Received:** Source: On-Site Insitu

Material: Clay

Specification: No Specification

The results outlined below apply to the sample as received

BH419 - (1.50 - 1.70m) Sample Location:

Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	15.5	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	73	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	26	
Plasticity Index (%)	AS 1289.3.3.1	47	
Date Tested		27/05/2022	

Comments

APPENDIX C:

CSIRO Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- · Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES		
Class	Foundation		
A	Most sand and rock sites with little or no ground movement from moisture changes		
S	Slightly reactive clay sites with only slight ground movement from moisture changes		
M	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes		
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes		
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes		
A to P	Filled sites		
P	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise		

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

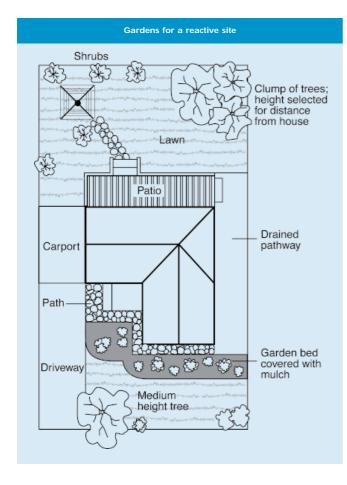
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Description of typical damage and required repair Approximate crack width **Damage** limit (see Note 3) category Hairline cracks < 0.1 mm 0 Fine cracks which do not need repair 1 <1 mm 2 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm 3 Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 15-25 mm but also depend 4 especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au

Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited