Proposed Subdivision Brush Creek Estate -Precinct 2, Stage 2 Site Classification

Kenakan Street, Edgeworth

NEW18P-0170F-AB 17 January 2022

GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING

17 January 2022

McCloy Edgeworth Pty Ltd Suite 2, Ground Floor, 317 Hunter Street NEWCASTLE NSW 2300

Attention: Mr Harry Thomson

Dear Sir

RE: PROPOSED SUBDIVISION - BRUSH CREEK ESTATE – PRECINCT 2, STAGE 2 KENAKAN STREET, EDGEWORTH SITE CLASSIFICATION (LOTS 201 TO 209)

Please find enclosed our geotechnical report for Lots 201 to 209 within Precinct 2, Stage 2 of the Brush Creek Estate residential subdivision, located at Kenakan Street, Edgeworth.

The report includes recommendations for Site Classification in accordance with AS2870-2011, "Residential Slabs and Footings" following the completion of site regrading earthworks.

If you have any questions regarding this report, please do not hesitate to contact Ben Bunting, Shannon Kelly or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Esc Les

Jason Lee Principal Geotechnical Engineer

Table of Contents:

1.0		Introduction	. 1
2.0		Desktop Study	. 1
3.0		Field Work	. 1
4.0		Site Description	. 2
	4.1	Site Regrade Works	. 2
	4.2	Surface Conditions	. 3
	4.3	Subsurface Conditions	.4
5.0		Laboratory Testing	. 8
6.0		Site Classification to AS2870-2011	.9
7.0		Limitations1	1

Attachments:

Figure AB1:	Site Plan and Approximate Test Locations
Sale Plan:	Sales Plan for Stage 2 Brush Creek
Appendix A:	Results of Field Investigations
Appendix B:	Results of Laboratory Testing
Appendix C:	CSIRO Sheet BTF 18

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this geotechnical report on behalf of McCloy Edgeworth Pty Ltd (McCloy), for Precinct 2, Stage 2, of the Brush Creek Estate residential subdivision, located at Kenakan Street, Edgeworth.

Based on the brief and drawings provided by the client, Stage 2 is understood to include 9 residential allotments (Lots 201 to 209), as shown on the attached sales plan provided by McCloy.

The scope of work for the geotechnical investigation included providing site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs* and *Footings*', following completion of site regrade works.

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 Desktop Study

The scope of work has included a review of the following reports completed by Qualtest:

- Site Classification, 'Proposed Subdivision, Brush Creek Estate Precinct 2, Stage 1, Bootaring Boulevard, Edgeworth, (Report Reference: NEW18P-0170D-AC, dated 14 October 2021);
- Geotechnical Assessment, 'Proposed Subdivision, Brush Creek Estate Precinct 2, Transfield Avenue, Edgeworth, (Report Reference: NEW18P-0170A-AA.Rev1, dated 4 March 2020);
- Level 1 Site Re-grade Assessment Report, 'Brush Creek Estate Precinct 2 Stage 2, Edgeworth', (Report Reference: NEW20P-0011F-AA, dated 17 December 2021).

This report includes a summary of selected results from the previous reports. Reference should be made to the reports outlined above for further details of site description, subsurface conditions, field work conducted, engineering logs of test pits / boreholes, laboratory testing results, site supervision and density testing carried out.

3.0 Field Work

Field work investigations were carried out on 8 December, 2021 and comprised of:

- DBYD search, review of plans, and visual check of proposed test locations for the presence of underground services;
- Site walkover to make observations of surface features at the property and in the immediate surrounding area;
- Excavation of 10 boreholes (BH201 to BH209, and BH205A), using a 2.7 tonne excavator equipped with a 300mm diameter auger attachment. Boreholes were terminated at depths of between 0.91m and 3.50m;
- Undisturbed samples (U50 tubes) were taken for subsequent laboratory testing; and,
- Boreholes were backfilled with the excavation spoil and compacted using the excavator auger and tracks.

Investigations were carried out by an experienced Geotechnical Engineer from Qualtest who located the boreholes, carried out the sampling and testing, produced field logs of the boreholes, and made observations of the site surface conditions.

Engineering logs of the boreholes are presented in Appendix A.

Approximate borehole locations are shown on the attached Figure AB1. Boreholes were located in the field relative to existing site features including topographic features, lot boundaries, existing developments and trees.

4.0 Site Description

4.1 Site Regrade Works

Following initial site visits, stripping assessments and recommendations performed on 2 June 2021, site re-grading filling works within Stage 2 residential lots was conducted between 17 June 2021 and 9 August 2021.

Re-grade works included filling within Lots 202 to 209.

Prior to filling, re-grade areas were stripped of topsoil and unsuitable material to expose the suitable natural foundation profile. Preparation works were then performed, which consisted of tyning, re-conditioning and re-compaction of the stripped surface, prior to filling with approved site fill to design finish levels.

Filling was performed using site stockpiled material won from excavations cut from around the site. The fill material could generally be described as mixtures of Residual (CI-CH) Sandy CLAY, medium to high plasticity, brown / red / grey in colour, with fine to coarse grained Sand and Gravel, along with Extremely Weathered (EW) Siltstone / Sandstone, pale yellow / brown / white in colour, blended with minor quantities of on-site pale brown Colluvium.

The approximate depth of fill placed ranged in the order of 0.3m to about 3.0m, with the deepest areas being associated with an old gully depression within Lot 205 to 207, and also adjacent to existing retaining walls along the site boundaries between Stage 1 and 2 lots.

The approximate maximum depth of fill placed over the lots excluding topsoil was in the order of:

- 1.8m Lot 202 to 204;
- 3.0m Lot 205 to 207;
- 1.5m Lot 208 to 209.

The approximate extent of lot re-grade works for this stage of the development is shown on the attached Figure AB1.

The fill was compacted in maximum lifts of 0.3m thickness. Any unsuitable or deleterious material within the fill was removed by hand or mechanical means prior to final compaction of the material.

As the geotechnical testing authority engaged for the project, Qualtest state that the regrading works performed within Stage 2 (as detailed in the site regrade report), was carried out to Level 1 criteria as defined in Clause 8.2 – Section 8, of AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments". Refer to site regrade letter referenced in Section 2.0 for further details. The recommendations of this report are based on the understanding that any existing lot re-grade works are limited to the controlled earthworks supervised by Qualtest, and placement of low reactivity topsoil material such that total depth of topsoil and uncontrolled fill does not exceed 0.4m. Qualtest should be informed without delay if additional earthworks are known to have been carried out.

At the time of the field investigations on 8 December 2021, several fill stockpiles were remaining on Lots 201 to 209. It is understood and expected that the fill stockpiles will be removed prior to development on the lots.

4.2 Surface Conditions

The site comprises Precinct 2, Stage 2 of the proposed residential subdivision known as Brush Creek Estate, located at Kenakan Street, Edgeworth, as shown on Figure AB1 attached.

The site is bounded by future Stage 4 to the west, to the south by existing Stage 1, to the north by proposed future stages of the development, and to the east by Bootaring Boulevard and in turn by undeveloped bushland.

Trafficability was judged to be good by way of 4WD vehicle along the existing sealed roads.

Photographs of the site taken on the day of the site investigations are shown below.

Photograph 1: From near western boundary of Lot 201, facing northeast.

Photograph 2: From near western boundary of Lot 201, facing east.

Photograph 3: From north-western corner of Lot 202, facing south.

Photograph 4: From north-western corner of Lot 202, facing west (along Kenakan Street).

Photograph 5: From northern boundary of Lot 206, facing east (along Kenakan Street).

Photograph 7: From near south-eastern corner of Lot 207, facing northeast.

Photograph 6: From northern boundary of Lot 206, facing southeast.

Photograph 8: From near south-eastern corner of Lot 207, facing east.

Photograph 9: From near south-eastern corner of Lot 207, facing west.

4.3 Subsurface Conditions

Photograph 10: From near south-eastern corner of Lot 207, facing northwest.

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet indicates the site to be underlain by the Adamstown and Boolaroo Subgroups of the Newcastle Coal Measures, which are characterised by Sandstone, Conglomerate, Siltstone, Coal, and Tuff rock types.

Table 1 presents a summary of the typical soil and rock types encountered at borehole locations during the field investigation, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the geotechnical units at the borehole locations.

TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL / ROCK TYPES

Unit	Soil Type	Description
1A	FILL -TOPSOIL	Gravelly Sandy CLAY – medium plasticity, dark grey-brown, fine to coarse grained (mostly fine to medium grained) sand, fine to medium grained angular to sub-angular gravel.
		Gravelly Sandy CLAY – low to high plasticity (generally medium plasticity), pale brown with some/trace pale orange-brown and grey to white / dark brown, fine to coarse grained sand, fine to medium grained (mostly fine to medium grained) angular to sub-angular gravel.
1B	FILL – CONTROLLED	Sandy CLAY – medium to high plasticity (generally medium plasticity), grey to pale grey / brown, fine to medium grained (mostly fine grained) sand, with some fine to medium grained (mostly fine grained) angular to sub-angular gravel in places.
		Clayey Sandy GRAVEL – fine to medium grained, sub-rounded to sub-angular, pale brown, fines of low plasticity, fine to coarse grained sand.
2	COLLUVIUM	Not Encountered within test pits during current investigation.
3	ALLUVIUM	Not Encountered within test pits during current investigation.
		CLAY, Sandy CLAY – medium to high plasticity, pale grey with some pale orange-brown, trace fine grained sand.
4	RESIDUAL SOIL	Gravelly Sandy CLAY, Sandy CLAY – low to medium plasticity (generally medium plasticity), pale grey to grey and pale brown, fine to medium grained sand, fine to medium grained angular to sub- angular gravel.
		Gravelly Silty SAND – fine to coarse grained, pale orange-brown, fines of low plasticity, fine grained angular to sub-angular gravel.
	EXTREMELY	Silty Sandstone; breaks down into Gravelly Clayey SAND – fine to coarse grained, pale grey, fine to medium grained angular gravel, fines of low plasticity.
5	WEATHERED (XW) ROCK with	Silty Sandstone; breaks down into Sandy CLAY – low plasticity, pale orange-brown and pale grey-to white, fine grained sand.
	soil properties	Sandstone; breaks down into Silty SAND – fine to coarse grained, pale orange-brown, fines of low plasticity, trace fine grained angular gravel.
6	HIGHLY WEATHERED	Silty SANDSTONE – fine to medium grained, pale grey to pale brown and pale orange-brown to red-brown, estimated very low to medium strength with some high strength layers.
	(HW) ROCK	Pebbly SANDSTONE – fine to medium grained, pale orange-brown, estimated low strength.

Location	UNIT 1A FILL-TOPSOIL	UNIT 1B FILL - CONTROLLED	UNIT 2 SLOPEWASH / COLLUVIUM	UNIT 3 ALLUVIUM	UNIT 4 RESIDUAL SOIL	UNIT 5 XW ROCK	UNIT 6 HW ROCK
		CONTROLLED	COLLOVIOM	Depth (m)			
		(Current Investigatior)		
BH201	0.00 - 0.30	-	-	-	0.30 - 0.90 1.60 - 1.90		- 1.60 - 1.95*
BH202	- 0.00 - 0.75 0.75 - 0.95		-	0.95 - 1.00*			
BH203	-	0.00 - 1.55	-	-	-	-	1.55 - 1.90*
BH204	-	0.00 - 1.65	-	-	-	-	1.65 - 1.70*
BH205	-	0.00 - 2.80	-	-	2.80 - 3.50	-	-
BH205A	-	0.00 - 1.90	-	-	1.90 - 2.80	-	2.80 - 2.90
BH206	-	0.00 - 2.40	-	-	-	2.40 - 2.60	-
BH207	-	0.00 - 1.25	-	-	-	-	1.25 - 1.30*
BH208	-	0.00 - 0.90	-	-	-	-	0.90 - 0.91*
BH209	-	0.00 - 1.15	-	-	-	-	1.15 - 1.20*
		Previous Investig	ation (Ref: NEW18P-0	0170D-AC, dated	14 October 2021)		
BH124	-	0.00 - 0.60	-	-	0.60 - 1.50	1.50 - 1.70	1.70*
BH125	0.00 - 0.30	0.30 - 0.90	-	-	0.90 - 2.00	-	-
BH126	0.00 - 0.30	0.30 - 0.60	-	-	0.60 -	- 2.00	-
BH127	0.00 - 0.30	0.30 - 0.80	-	_	0.80 - 2.00	-	-

TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT BOREHOLE LOCATIONS

Location	UNIT 1A FILL-TOPSOIL	UNIT 1B FILL - CONTROLLED	UNIT 2 SLOPEWASH / COLLUVIUM	UNIT 3 ALLUVIUM	UNIT 4 RESIDUAL SOIL	UNIT 5 XW ROCK	UNIT 6 HW ROCK
				Depth (m)			
BH128	0.00 - 0.40	0.40 - 1.50	-	-	1.50 - 1.58	-	1.58 - 1.60*
BH129	0.00 - 0.15	0.15 - 1.50	-	-	1.50 - 1.80	-	1.80 - 2.00
BH130	0.00 - 0.40	-	-	-	0.40 - 1.20	1.20	- 2.00
BH131	0.00 - 0.20	0 - 0.20 0.20 - 0.60				-	0.60 - 0.62*
BH132	0.00 - 0.15	-	-	-	0.15 -	- 0.35	0.35 - 0.40*
BH133	0.00 - 0.15	-	-	-	0.15 - 0.35	0.35 - 0.38	0.38 - 0.40*
	Previous li	nvestigation (Ref: N	EW18P-0170A-AA.R	ev1, 4 March 2020)) – Prior to site regra	de works	
TPP09	0.00 - 0.20	-	-	-	0.20 - 1.20	1.20 - 2.65	-
TPP10	0.00 - 0.15	-	0.15 -	- 0.35	0.35 - 1.00	-	1.00 - 1.15*
TPP15	0.00 - 0.10	-	0.10 -	- 0.30	0.30 - 0.70	-	0.70 - 0.95*
NOTES:	* = Practical refu	sal or refusal of 2.7	tonne excavator w	ith auger drill atta	chment met on High	ly Weathered Roc	k.
	\wedge = Very slow pro	ogress of 2.7 tonne o	excavator with aug	er drill attachmen	t met on Extremely t	o Highly Weathere	ed Rock.
	# = Practical refu	usal of hand auger	met on Extremely to	o Highly Weathere	d Rock.		
	Preliminary investig	gation encountere	d no fill material; to	psoil noted as FILL-	-TOPSOIL Unit 1A for	simplicity.	

Groundwater levels or inflows were not encountered in boreholes during the limited time that they remained open on the day of the field investigations.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

5.0 Laboratory Testing

Samples collected during the field investigations were returned to our NATA accredited Newcastle Laboratory for testing which comprised of:

- (8 no.) Shrink / Swell tests; and
- (2 no.) Atterberg Limits tests.

Two shrink/swell tests were replaced by Atterberg Limits classification tests due to the friable nature of the soils.

Results of the laboratory testing are presented in Appendix B, with a summary of the Shrink/Swell and Atterberg Limits test results presented in Table 3 and Table 4, respectively, which also include results from previous testing in the area.

Location	Depth (m)	Material Description	Iss (%)
	Cu	rrent Investigation (October 2021)	
BH201	0.50 - 0.65	(CH) CLAY	0.5
BH202	0.60 - 0.75	FILL: (CI) Gravelly Sandy CLAY	1.8
BH203	0.40 - 0.55	FILL: (CI) Gravelly Sandy CLAY	0.5
BH203	1.40 - 1.55	FILL: (CH) Gravelly Sandy CLAY	0.9
BH204	0.80 - 1.00	FILL: (CL) Gravelly Sandy CLAY	0.3
BH205	0.70 - 0.85	FILL: (CI) Gravelly Sandy CLAY	0.9
BH207	0.60 - 0.85	FILL: (CH) Sandy CLAY	0.6
BH208	0.60 - 0.80	FILL: (CH) Sandy CLAY	0.5
Pre	evious Investigatio	on (Ref: NEW18P-0170D-AC, dated 14 Octob	er 2021)
BH125	0.50 - 0.70	FILL: (CI) Gravelly Sandy CLAY	0.6
BH126	0.40 - 0.50	FILL: (CI) Sandy CLAY	2.4
BH129	0.40 - 0.60	FILL: (CI) Gravelly Sandy CLAY	0.4
BH130	0.70 - 0.90	(CH) Sandy CLAY	1.1
BH131	0.40 - 0.60	FILL: (CI) Gravelly Sandy CLAY	0.8
BH133	0.20 - 0.35	(CI) Gravelly Sandy CLAY	3.7
F	Previous Investiga	tion (Ref: NEW18P-0170A-AA.Rev1, 4 March	2020)
TTP09	0.40 - 0.50	(CH) CLAY	5.1

TABLE 3 – SUMMARY OF SHRINK/SWELL TESTING RESULTS

Location	Depth (m)	Material Description Limit L		Plastic Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)								
	Current Investigation (December 2021)													
BH206	0.50 - 0.65	FILL: (CL) Gravelly Sandy CLAY	31	16	15	8.0								
BH209	0.60 - 0.75	FILL: (CI) Gravelly Sandy CLAY	46	17	29	-								
	Previous Inv	vestigation (Ref: NEW18P-01701	D-AC, da	led 14 Oc	tober 2021)									
BH124	0.80 - 0.95	(CH) CLAY	50	17	33	12.0								
BH127	0.30 - 0.45	FILL: (CI) Gravelly Sandy CLAY	40	19	21	9.0								
BH128	0.80 - 1.00	FILL: (CI) Gravelly Sandy CLAY	37	16	21	8.0								
	Previous I	nvestigation (Ref: NEW18P-017	'0A-AA.R	ev1, 4 Mo	arch 2020)									
TPP15	0.30 - 0.50	(CI) Gravelly Sandy CLAY	44	20	24	9.0								

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

The results of the Shrink/Swell and Atterberg Limits laboratory testing indicate that the residual soils tested from the site generally contain fines of medium and medium to high plasticity, and that the fill materials generally contain fines of low to high plasticity.

6.0 Site Classification to AS2870-2011

Based on the results of the field work, laboratory testing and site regrade works conducted, residential lots located within Precinct 2, Stage 2 of the Brush Creek Estate residential subdivision, as shown on the attached Figure AB1, are classified in their current condition in accordance with AS2870-2011 '*Residential Slabs and Footings*', as shown in Table 5.

	Lot Numbers	Site Classification				
	201 to 204 and 207 to 209	H1				
	205 to 206	H2				
Notes:	Localised fill stockpiles remained on Lots 201 to 209 at the investigations, the approximate locations of which are sl Site classifications provided herein are made on the unc stockpiles will be removed prior to sales / development of topsoil and/or uncontrolled fill depths on lots is less than	nown on Figure AB1. Ierstanding that the fill of the lots, such that remaining				

TABLE 5 – SITE CLASSIFICATION TO AS2870-2011

If any localised areas of topsoil and/or uncontrolled fill of depths greater than 0.4m
are encountered during construction, footings should be designed in accordance
with engineering principles for Class 'P' sites.

A characteristic free surface movement of 40mm to 60mm is estimated for the lots classified as **Class 'H1'** in their existing condition.

A characteristic free surface movement of 60mm to 75mm is estimated for the lots classified as **Class 'H2'** in their existing condition.

The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

If site re-grading works involving cutting or filling are performed after the date of this assessment, the classification may change and further advice should be sought.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the residual clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes *M*, *H*1, *H*2 and *E* sites' including architectural restrictions, plumbing and drainage requirements; and,
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix C.

All structural elements on all lots should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, wet or other potentially deleterious material.

If any localised areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

7.0 Limitations

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete test locations. It should be noted that subsurface conditions between and away from the test locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Shannon Kelly, Ben Bunting, or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

2rc -les

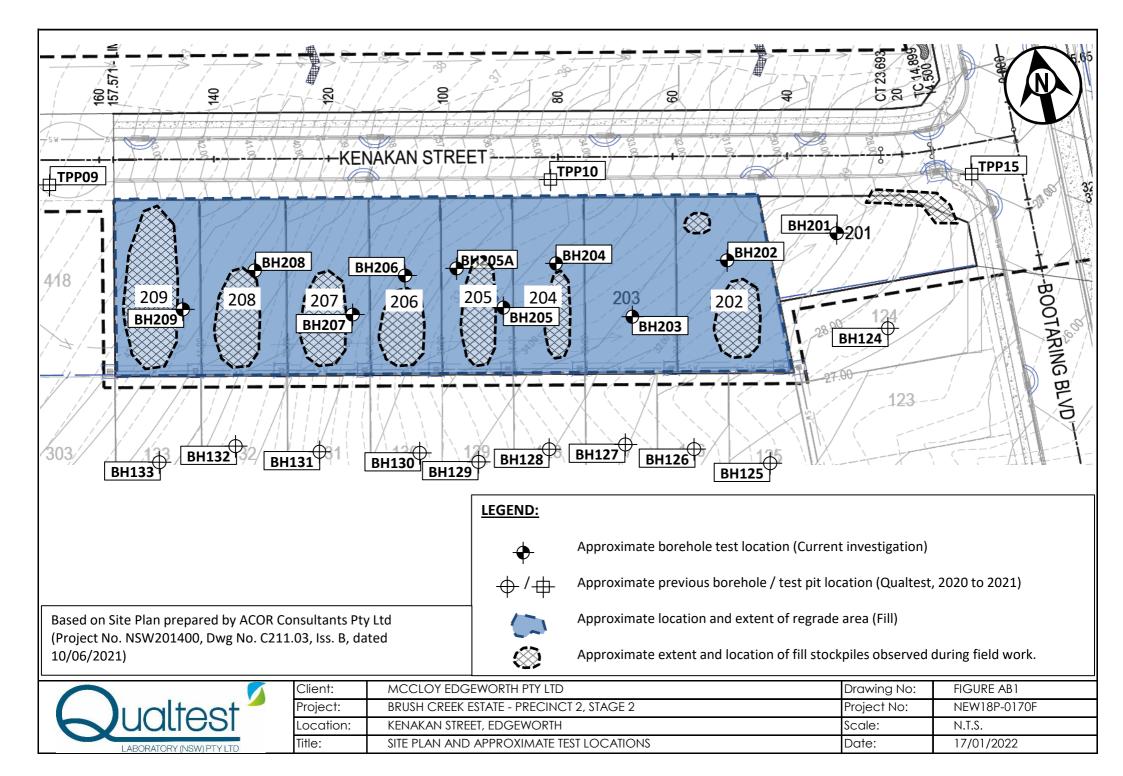
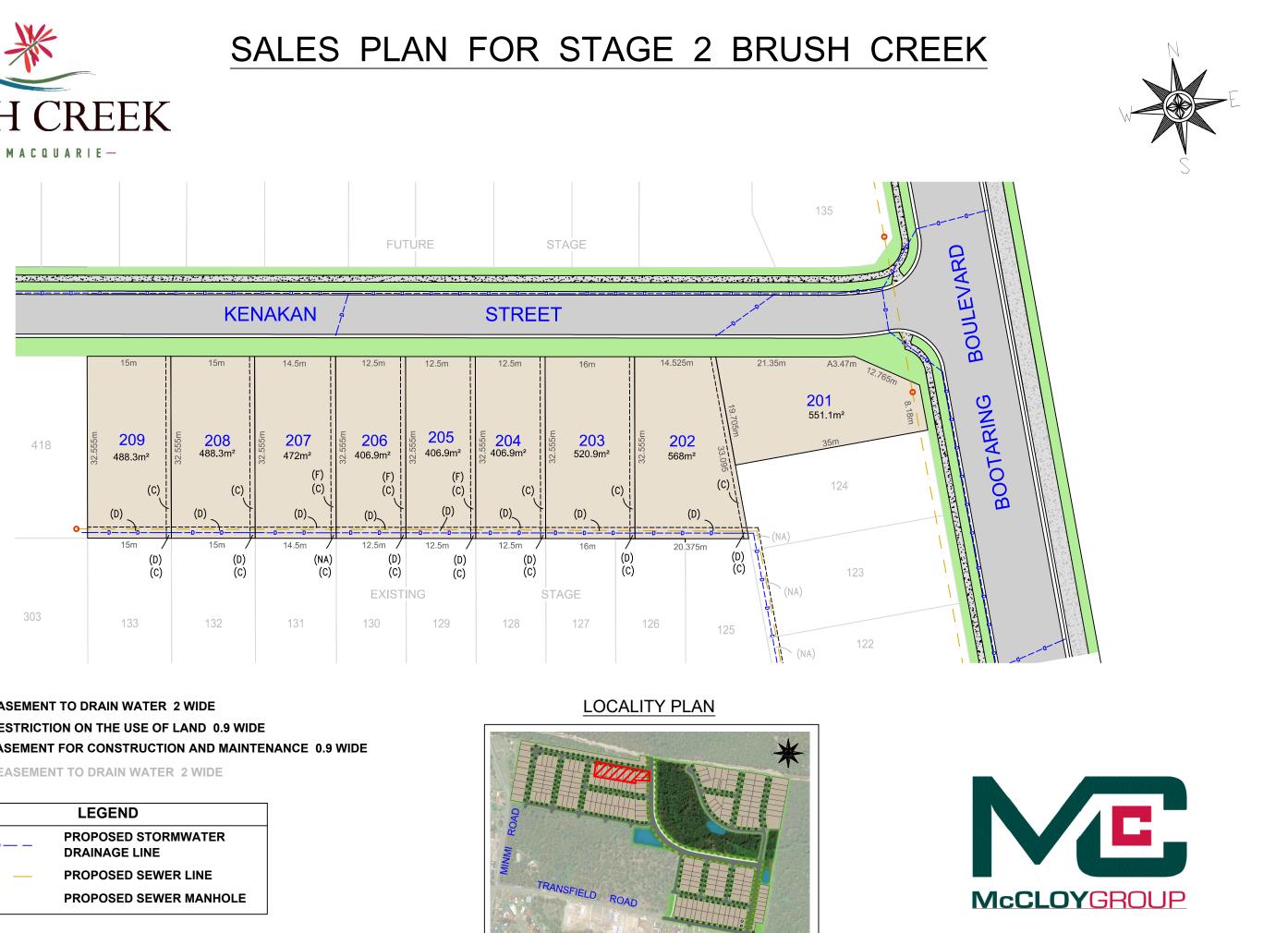

Jason Lee Principal Geotechnical Engineer

FIGURE AB1:

Site Plan and Approximate Test Locations


SALE PLAN:

Sales Plan for Stage 2 Brush Creek

-LAKE MACQUARIE-

- (D) EASEMENT TO DRAIN WATER 2 WIDE
- (C) RESTRICTION ON THE USE OF LAND 0.9 WIDE
- (F) EASEMENT FOR CONSTRUCTION AND MAINTENANCE 0.9 WIDE

(NA) EASEMENT TO DRAIN WATER 2 WIDE

	LEGEND
— — D — — —	PROPOSED STORMWATER DRAINAGE LINE
<u> </u>	PROPOSED SEWER LINE
O	PROPOSED SEWER MANHOLE

APPENDIX A:

Results of Field Investigations

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH201

1 OF 1

NEW18P-0170F

LOGGED BY:

		YPE: Ole dian		TONNE :	EXCA 300 m		R SURF DATL	FACE RL: JM:					
	Drill	ing and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.50m U50 0.65m				СІ	0.90m 0.90m Extremely Weathered Silty Sandstone with properties; breaks down into Gravelly Clay	rained to medium with d sand.	M ~ Wp	VSt	HP HP	320	FILL - TOPSOIL RESIDUAL SOIL RESIDUAL SOIL RESIDUAL SOIL
	2			- - - 1. <u>5</u> - -		CL CI	Silty SANDSTONE - fine to medium grainer brown to pale grey, estimated very low to lo strength. Extremely Weathered Silty Sandstone with properties; breaks down into Sandy CLAY- plasticity, pale orange-brown and pale grey fine grained sand. 1.60m CLAY - medium plasticity, pale grey and pa orange-brown with some red-brown, trace f grained sand.	d, pale bw soil - low r to white, ale	D M > W	H / Fb			EXTREMELY WEATHERED ROCK RESIDUAL SOIL
						└── ── ·	1.90m Silty SANDSTONE - fine grained, pale orar to red-brown and pale grey, estimated med strength. Hole Terminated at 1.95 m Practical Refusal		D				HIGHLY WEATHERED
	Wat (Dat ∙ Wat I Wat ata Cha ata Cha tra	er Level e and time sl er Inflow er Outflow anges radational or ansitional stra afinitive or dis rata change	nown) ta	I Notes, Sa U₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photoi Dynan	Diame ample onmenta jar, se culfate c bag, cample ionisati nic pen	E ter tube sample or CBR testing I sample aled and chilled on site) soil Sample air expelled, chilled) an detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H H	Incy ery Soft oft tiff ery Stiff lard riable V L ME D	Vi La	25 25 50 20 20 20 24 ery Lo pose	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH202

1 OF 1

NEW18P-0170F

LOGGED BY:

во	REH	OLE DIAM	ETER	-	300 m	m	DAT	JM:			r		
	Drill	ing and Sam	npling	-1			Material description and profile information				Fiel	d Test	
MEIHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	<u>0.60m</u> U50		- - - 0. <u>5</u> -		CI	FILL: Gravelly Sandy CLAY - medium plas brown with some pale orange-brown, fine i grained sand, fine to medium grained ang sub-angular gravel.	o coarse	M ~ Wp	VSt	HP	230	FILL - CONTROLLED
		0.75m		-		CI	0.75m Sandy CLAY - medium plasticity, pale grey fine to medium grained sand.	to grey,	M < Wp	_	HP	380	RESIDUAL SOIL
				1.0 - - 1.5 - - - - - - - - - - - - - - - - - - -			1.00m Silty SANDSTONE - fine to medium graine trace pale orange-brown, estimated mediu strength. Hole Terminated at 1.00 m Practical Refusal	m/	D				HIGHLY WEATHERED
<u>Wat</u>	Wat (Dat Wat Wat Wat <u>ta Cha</u> Gi tra	er Level e and time sh er Inflow er Outflow anges radational or ansitional stra sfinitive or dis	ta	Notes, Sa U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photo	Diame ample f nmenta jar, se ulfate \$ c bag, a ample onisatio	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt V	rincy /ery Soft Firm Stiff /ery Stiff Hard Friable V L MI	- Vi Lo	<2	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH203

1 OF 1

NEW18P-0170F

LOGGED BY:

		YPE: Ole dian		TONNE :	EXCA 300 m		R SURI DATI	FACE RL: JM:					
	Dril	ling and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor component	ty/particle its	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
	g	0.40m U50 0.55m		- - - - - - -		СІ	FILL: Gravelly Sandy CLAY - medium plas grey-brown trace pale orange-brown and g white, fine to coarse grained (mostly fine to grained) sand, fine to medium grained (mo grained) angular to sub-angular gravel.	rey to medium	M > w _p	VSt	HP	280 380	FILL - CONTROLLED
AD/T	Not Encountered			- 1.0_		сı	FILL: Sandy CLAY - medium plasticity, gre grey, fine to medium grained (mostly fine g sand.	ırained) 	M M		HP HP	300 350	
		1.40m U50		- - 1.5_		СН	plasticity, dark brown, fine to coarse graine fine grained) sand.	gn d (mostly	M > w _P		HP	210	
		1.55m		-	· · · · · · · · · · · · · · · · · · ·		<u>1.55m</u> Pebbly SANDSTONE - fine to medium grai orange-brown, estimated low strength.	ined, pale	D				HIGHLY WEATHERED ROCK
				2. <u>0</u> - - -			Hole Terminated at 1.90 m Practical Refusal						
<u>Wat</u> ▲	Wa (Da - Wa Wa	ter Level te and time s ter Inflow ter Outflow anges	hown)	Notes, Sa U₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se sulfate \$	S er tube sample or CBR testing I sample aled and chilled on site) ioil Sample ir expelled, chilled)	S S F F St S VSt V H F	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable		<2 25 50 10 20 >4	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	tr D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	L N D	'ery Lo oose lediun ense 'ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH204

1 OF 1

NEW18P-0170F

во	REH	OLE DIAM	ETER	:	300 m	m	DATU	JM:			1		
	Drill	ing and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	ty/particle its	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.80m U50 1.00m				CL	FILL: Gravelly Sandy CLAY - low to mediuu plasticity, brown to pale brown, fine to coar sand, fine to coarse grained (mostly fine to grained) angular to sub-angular gravel. Pale brown.	se grained	M < w _p	H / Fb	HP	480	FILL - CONTROLLED
				- - 1. <u>5</u> -		сн	 1.30m FILL: Sandy CLAY - medium to high plastic and grey-brown, fine to coarse grained sar fine grained angular gravel. 1.65m 1.70m Silty SANDSTONE - fine grained, pale grey \estimated medium to high strength. 	nd, trace	^d m ∧ ₩ ₩	VSt	HP		HIGHLY TO MODERATE WEATHERED ROCK
				- 2.0_ - - -	-		Hole Terminated at 1.70 m Practical Refusal						
	Wat (Dat Wat I Wat Ita Cha	er Level te and time sh er Inflow er Outflow <u>anges</u> radational or		Notes, Sa U ₅₀ CBR E ASS B Field Test PID	50mm Bulk s Envirc (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se culfate S c bag, a ample	er tube sample or CBR testing I sample aled and chilled on site) oil Sample ir expelled, chilled)	S S F F St S VSt V	Very Soft Soft Firm Stiff Very Stiff Hard Friable V	V	<2 28 50 10 20 >2 ery Lo	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%
	D	ansitional strat efinitive or dis rata change		DCP(x-y) HP	Dynan	nic pene	n detector reading (ppm) trometer test (test depth interval shown) meter test (UCS kPa)		L ME D VD) M D	oose lediun ense ery D	n Dense ense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH205

1 OF 2

NEW18P-0170F

LOGGED BY:

BO	REH	ole diame	TER:	1	300 m	m	DAT	JM:				1	
	Drill	ing and Sampl	ing				Material description and profile information				Fiel	d Test	
METHOD	WATER		RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
							FILL: Gravelly Sandy CLAY - medium plas brown, fine to coarse grained sand, fine to grained angular to sub-angular gravel.		M > Wp		HP	280	FILL - CONTROLLED
				0.5		CI	Dark brown.				HP	290	
	ntered	0.70m U50 0.85m		- - 1.0_ -					M < W		HP	270	
AD/T	Not Encountered			- - 1.5_ -		сн	FILL: Sandy CLAY - medium to high plasti brown, fine to coarse grained sand, with so medium grained (mostly fine grained) angu	ome fine to		VSt	HP	230 250	
						CI	<u>1.70m</u> FILL: Sandy CLAY - medium plasticity, dar fine to coarse grained sand, with some fine angular to sub-angular gravel.		M > Wp		HP	310 210	
	Wat (Dat	er Level e and time show er Inflow er Outflow anges	vn)	Notes, Sar U ₅₀ CBR E ASS B	50mm Bulk sa Enviro (Glass Acid S	Diamet ample fo nmental jar, sea ulfate S c bag, a	<u>e</u> er tube sample or CBR testing sample led and chilled on site) bil Sample ir expelled, chilled)	S S F I St S VSt V	Ancy Very Soft Soft Firm Stiff Very Stiff Hard Friable		<2 2 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
	Gi tra De	radational or ansitional strata efinitive or distic rata change		Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	n detector reading (ppm) trometer test (test depth interval shown) neter test (UCS kPa)	<u>Density</u>	V L ME D VD	La D M	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

2 OF 2

2 OF 2 NEW18P-0170F

BB

8/12/21

BO	REH		TER:		300 m	m	DAT						
	Drill	ing and Sam	pling				Material description and profile information		- i	1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
						СІ	FILL: Sandy CLAY - medium plasticity, dar fine to coarse grained sand, with some fine angular to sub-angular gravel. (continued) 2.80m		M > Wp	VSt	HP	200	
AD/T	Not Encountered			3.0		SM	Gravelly Silty SAND - fine to coarse graine orange-brown, fines of low plasticity, fine g angular to sub-angular gravel.	d, pale rained	D	VD			RESIDUAL SOIL7 POSSIBLE EXTREMELY WEATHERED ROCK / POSSIBLE FILL
						CI CL	3.30m Sandy CLAY - medium plasticity, red-brow some grey and white, fine to medium grain Sandy CLAY - low to medium plasticity, pa 3.50m to pale grey-brown, fine to coarse grained fine grained) sand, with some fine grained	ed sand. le brown (mostly	– ⊸ W	VSt	HP	370	RESIDUAL SOIL / POSSIBLE FILL
	SEND:			- - 4.0 - - 4.5 - - - - - - - - - - - - - - - - - - -			sub-angular gravel. Hole Terminated at 3.50 m Limit Of Reach	Consiste				CS (kP#) Moisture Condition
	— (Dat - Wat I Wat I Wat <u>I Cha</u> Gi 	er Level e and time sho er Inflow er Outflow anges radational or ansitional strat efinitive or dist	own)	U₅₀ CBR E ASS B Field Test PID DCP(x-y)	Bulk s Enviro (Glass Acid S (Plasti Bulk S s Photoi	ample f nmenta jar, se culfate S c bag, a ample onisatio	ter tube sample or CBR testing Il sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown)	S S F F St S VSt N H F	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L ME	V	25 50 20 20 20 20 20 20 20 20 20 20 20 20 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose n Dense	W ^r Liquid Limit Density Index <15%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT:MCCLOY EDGEWORTH PTY LTDPROJECT:BRUSH CREEK - PRECINCT 2, STAGE 2

BOREHOLE NO: BH205A

1 OF 2

NEW18P-0170F

LOGGED BY:

PAGE:

DATE:

JOB NO:

BO	REH		ETER	:	300 mi	n	DAT	UM:			1		
	Drill	ing and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
					***	0	FILL: Gravelly Sandy CLAY - medium plas grev-brown, fine to coarse grained sand, fi						FILL - CONTROLLED
				- - 0.5		CI	Pale brown to pale orange-brown.	ne to	M > w _P		HP	300	
						01						200	
							Dark grey-brown.		M ~ Wp	VSt			
AD/T	Not Encountered			-		CI	FILL: Sandy CLAY - medium plasticity, pal fine to coarse grained sand, with some fine sub-rounded to angular gravel.				HP	260	
	No			- 1.5_ - -		CL	FILL: Gravelly Sandy CLAY - low to mediu plasticity, pale brown, fine to coarse graine fine grained sub-rounded to angular grave	ed sand,	M ∼ W _P		HP	290	
				- 2.0		CL	1.90m Gravelly Sandy CLAY - low to medium plat grey-brown, fine to coarse grained (mostly grained) sand, fine to medium grained ang sub-angular gravel.	fine	M < W _p	H / Fb			RESIDUAL SOIL 7 EXTREMELY WEATHER ROCK / POSSIBLE FILL
						СН	Sandy CLAY - medium to high plasticity, g grey trace brown, fine to coarse grained sa fine grained rounded to sub-angular grave	and, trace	M ~ M	VSt	HP	240	RESIDUAL SOIL / POSSIBLE FILL
	END:			Notes, Sai				Consiste	ency	1		CS (kPa	
	Wat (Dat Wat Wat	er Level e and time sho er Inflow er Outflow	own)	U₅ CBR E ASS B	Bulk sa Enviro (Glass Acid S	ample f nmenta jar, sea ulfate S c bag, a	ter tube sample or CBR testing I sample aled and chilled on site) toil Sample air expelled, chilled)	S S F F St S VSt N H H	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	P
<u>Stra</u>	tra D	anges radational or ansitional strata efinitive or dist rata change	a	в Field Test PID DCP(x-y) HP	<u>s</u> Photoid Dynarr	onisatio	n detector reading (ppm) strometer test (test depth interval shown) meter test (UCS kPa)	Density	-riable V L MD D	Lo M	ery Lo pose ediun ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO: **BH205A**

2 OF 2

LOGGED BY:

PAGE:

DATE:

JOB NO:

8/12/21

NEW18P-0170F BB

	Drill	ing and Sam	pling				Material description and profile information				Field	d Test	
МЕТНОЛ	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and addition observations
	ed					CLA	Sandy CLAY - medium to high plasticity, gr			8	·		RESIDUAL SOIL / POSSIBLE FILL
1/	Not Encountered			-		СН	grey trace brown, fine to coarse grained san fine grained rounded to sub-angular gravel. (continued) 2.70m	nd, trace	M ~ M	VSt			
AU/I	Not E			-		СН	CLAY - medium to high plasticity, grey with 2.80m red-brown, trace fine grained sand.				HP	200	
					: 0 : 		Pebbly SANDSTONE - fine to coarse graine orange-brown to pale brown, estimated very low strength.	ed, pale y low to /	D				HIGHLY WEATHERED ROCK
				3.0			Estimated medium to high strength. Hole Terminated at 2.90 m]					
				-									
				-									
				3. <u>5</u>									
				-									
				-									
				-									
				4. <u>0</u>									
				-									
				-									
				-									
				4.5_									
				-									
				-									
LEG	END: er	I	1	Notes, Sau U ₅₀			<u>s</u> ter tube sample	Consister	ncy /ery Soft		<u>U(</u> <2	CS (kPa 25) Moisture Condition D Dry
Y	Wat (Dat	er Level e and time sh er Inflow	own)	CBR E	Enviro (Glass	nmenta jar, se	or CBR testing Il sample aled and chilled on site)	F F St S	ioft irm itiff		50 10	5 - 50) - 100)0 - 200	M Moist W Wet W _p Plastic Limit
	Wat	er Outflow		ASS	(Plasti		Soil Sample air expelled, chilled)	н н	′ery Stiff lard riable			10 - 400 100	W _L Liquid Limit
<u>stra</u>		anges radational or ansitional stra		в Field Test PID	<u>s</u>		on detector reading (ppm)	Density	riable V L		ery Lo bose	ose	Density Index <15% Density Index 15 - 35%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT:MCCLOY EDGEWORTH PTY LTDPROJECT:BRUSH CREEK - PRECINCT 2, STAGE 2

BOREHOLE NO:

BH206

1 OF 2

NEW18P-0170F

LOGGED BY:

PAGE:

DATE:

JOB NO:

BO	REH		ETER:		300 m	m	DATU	FACE RL: JM:					
	Drilli	ing and Sam	pling	I			Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.50m U50 0.65m				CL GC CI CI	FILL: Gravelly Sandy CLAY - low to mediu plasticity, pale brown, fine to coarse graine fine to coarse grained (mostly fine to mediu grained) angular gravel. Pale grey-brown. Trace cobbles. 1.30m FILL: Clayey Sandy GRAVEL - fine to medi grained, sub-rounded to sub-angular, pale fines of low plasticity, fine to coarse grained 1.75m FILL: Sandy CLAY - medium plasticity, palk orange-brown with some pale grey, fine to grained (mostly fine grained) sand. 2.00m FILL: Gravelly Sandy CLAY - medium plasticity, palk orange-brown with some pale grey, fine to grained (mostly fine grained) sand. 2.00m FILL: Gravelly Sandy CLAY - medium plasticity, palk orange-brown with some pale grey, fine to grained (mostly fine grained) sand. 2.00m FILL: Gravelly Sandy CLAY - medium plasticity, palk orange-brown to brown, fine to coarse grained san medium grained sub-rounded to sub-angular	d sand, im ium brown, d sand.	M ~ W M < W M	H / Fb D VSt Fb		550	FILL - CONTROLLED
	END:		<u> </u>	Notes, Sa				Consiste		I		CS (kPa	Moisture Condition
Wate		er Level		U₅₀ CBR	Bulk s	ample f	ter tube sample or CBR testing	S S	/ery Soft Soft			5 - 50	D Dry M Moist
-		e and time sho	own)	E			al sample aled and chilled on site)		Firm Stiff) - 100)0 - 200	W Wet W₀ Plastic Limit
►	•	er Inflow	í í	ASS			aled and chilled on site) Soil Sample		ottff /ery Stiff)0 - 200)0 - 400	P
-		er Outflow			(Plasti	c bag, a	air expelled, chilled)	н н	lard			400	
Strat	ta Cha	_		B Field Test	Bulk S	ample			riable V	1/	ervia	050	Density Index <15%
		adational or		PID		onisatio	on detector reading (ppm)	<u>Density</u>	V L		ery Lo oose	ose	Density Index <15% Density Index 15 - 35%
	tra	insitional strat		DCP(x-y)			etrometer test (test depth interval shown)		ME			n Dense	
	D/	efinitive or dist	ict I		Dynan	no pon				<i>y</i> 10	euluii	DCIIGC	Density index 00 - 00 /0

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

2

2 OF 2 NEW18P-0170F

BB

BH206

LOGGED BY: DATE:

PAGE:

JOB NO:

8/12/21

		YPE: Ole dian		TONNE :	EXCA 300 m		R SURI DATI	FACE RL: JM:					
	Dril	ing and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	ty/particle its	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T						SM	Extremely Weathered Sandstone with soil breaks down into Silty SAND - fine to coars	se grained,	D	VD			EXTREMELY WEATHERE ROCK
	GEND			3.0_ 			Pale orange-brown, fines of low plasticity, t grained angular gravel. <i>(continued)</i> Hole Terminated at 2.60 m	Consiste				CS (kP	a) Moisture Condition
<u>Wat</u>	Wat (Da	er Level te and time s	hown)	U ₅₀ CBR E	Bulk s Enviro (Glass	ample f nmenta s jar, se	er tube sample r CBR testing sample led and chilled on site)	S S F F St S	/ery Soft Soft Firm Stiff		25 50 10	25 5 - 50 0 - 100 00 - 200	P
Stra		er Inflow er Outflow anges		ASS B	(Plast		bil Sample ir expelled, chilled)	н н	/ery Stiff lard [:] riable			00 - 400 400	W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	<u>s</u> Photo Dynar	ionisatio nic pene	n detector reading (ppm) trometer test (test depth interval shown) neter test (UCS kPa)	<u>Density</u>	V L ME D VE	L D M D	ery Lo oose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 35 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH207

1 OF 1

NEW18P-0170F

LOGGED BY: BB

8/12/21

		YPE: OLE DIAM		TONNE :	300 m		DATU	FACE RL: JM:					
	Drill	ing and Sam	pling	-			Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CI	FILL: Gravelly Sandy CLAY - medium plas grey-brown, fine to coarse grained sand, fir coarse grained angular gravel.	iicity, dark ne to	M < W _P	Н	HP	550	FILL - CONTROLLED
L	Not Encountered	0.60m		0.5			FILL: Sandy CLAY - medium to high plastic brown and pale grey to white, fine to coarse sand.	e grained	م م		HP	350	
AD/T	Not End	U50 0.85m		-		СН	With some fine to medium grained angular 0.90m		M > W	VSt			
				1.0		СІ	FILL: Gravelly Sandy CLAY - medium plass brown, fine to coarse grained sand, fine to grained rounded to sub-angular gravel.		M ~ WP	VSt - H	HP HP	450 410	
							1.25m Silty SANDSTONE - fine grained, pale \orange-brown, estimated medium to high s		D				HIGHLY WEATHERED
				- 1. <u>5</u>			Hole Terminated at 1.30 m Practical Refusal						
				-									
				-									
				2.0									
				-									
Wat				Notes, Sa U ₅₀ CBR	50mm	Diame	<u>s</u> er tube sample or CBR testing		ency Very Soft Soft		<2	CS (kPa 25 5 - 50	a) <u>Moisture Condition</u> D Dry M Moist
	(Dat - Wat	er Level e and time sh er Inflow er Outflow anges	iown)	E ASS B	Enviro (Glass Acid S (Plasti	nmenta jar, se sulfate \$	l sample lade and chilled on site) ioil Sample ir expelled, chilled)	F St VSt H	Firm Stiff Very Stiff Hard Friable		50 10 20) - 100)0 - 200)0 - 400 400	W Wet W _p Plastic Limit
	G tra De	radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	L N D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT:MCCLOY EDGEWORTH PTY LTDPROJECT:BRUSH CREEK - PRECINCT 2, STAGE 2

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH208

1 OF 1

NEW18P-0170F

LOGGED BY:

		YPE: OLE DIAMI		TONNE :	300 m		DATU	FACE RL: JM:					
	Drill	ing and Sam	pling				Material description and profile information			1	Fiel	d Test	
MEIHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
	p			-		CL	FILL: Gravelly Sandy CLAY - low to mediur plasticity, dark grey-brown, fine to coarse g sand, fine to coarse (mostly fine to medium angular gravel.	rained	M < W _P	H / Fb			FILL - CONTROLLED
AU/I	Not Encountered			0.5_			FILL: Sandy CLAY - medium to high plastic grey to pale brown, fine to coarse grained s some fine to medium grained angular grav	sand, with	۵.		HP	330	
		0.60m U50 0.80m		-		СН	Grey-brown.		A ~ K	VSt	HP	380 350	
				1.0_ - - 1.5_ -			0.90m Silty SANDSTONE - fine grained, pale orange-brown, estimated medium to high s Hole Terminated at 0.91 m Practical Refusal				-		HIGHLY WEATHERED
				- 2.0_ - -									
<u>Wat</u>	Wat (Dat Wat Wat Wat	er Level e and time shu er Inflow er Outflow anges ardational or	own)	Notes, Sar U ₅₀ CBR E ASS B Field Test	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se ulfate \$ c bag, a	Seter tube sample or CBR testing Il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F I St S VSt V	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable V	7	<: 2! 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 2005e	D Dry M Moist W Wet W _p Plastic Limit
	tra	ansitional strat efinitive or dist rata change		PID DCP(x-y) HP	Dynan	nic pen	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L ME D VE	D M D	oose lediur ense ery D	n Dense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

LOCATION: KENAKAN STREET, EDGEWORTH

CLIENT: MCCLOY EDGEWORTH PTY LTD PROJECT: BRUSH CREEK - PRECINCT 2, STAGE 2 BOREHOLE NO:

PAGE:

DATE:

JOB NO:

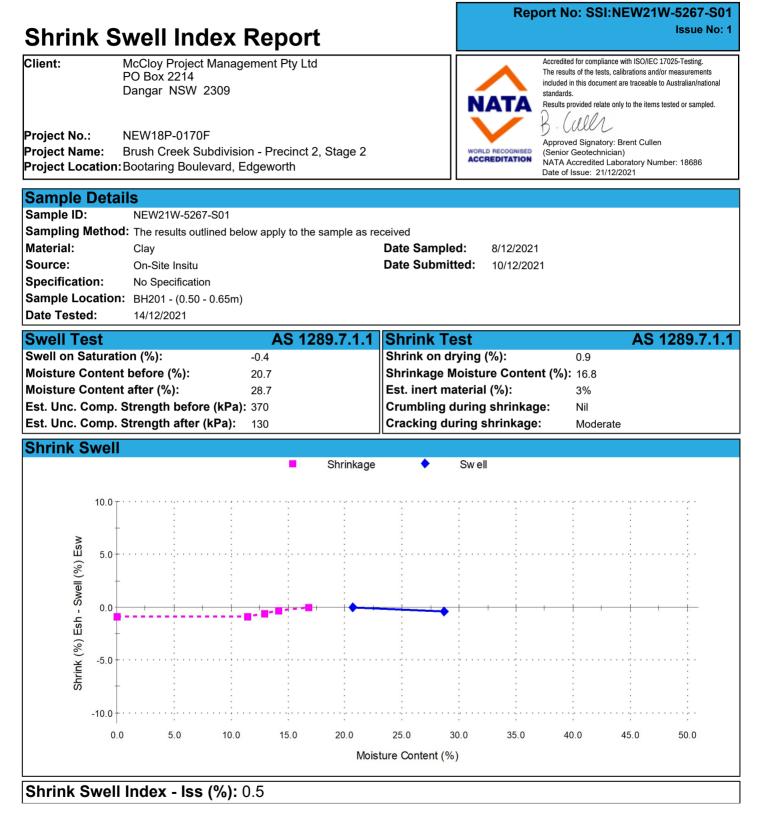
BH209

1 OF 1

NEW18P-0170F

LOGGED BY:

во		YPE: OLE DIAM		TONNE :	300 m		R SUR DAT	UM:					
	Drill	ing and Sam	pling				Material description and profile information			1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastic characteristics,colour,minor compone		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	FILL: Gravelly Sandy CLAY - low to mediu plasticity, dark brown, fine to coarse grain fine to coarse grained angular gravel.	m ₂d sand,	M < Wp	H / Fb	HP	>600	FILL - CONTROLLED
AD/T	Not Encountered	0.60m U50 0.75m		0.5		CI	FILL: Gravelly Sandy CLAY - medium plas brown, fine to coarse grained sand, fine gr angular to sub-angular gravel.	ticity, pale ained	M > W _P	VSt	HP	210	
				- 1.0_ -			1.15m 1.20m Silty SANDSTONE - fine grained, red-brow		D ≪ P	H / Fb			HIGHLYWEATHERED
				- 1. <u>5</u> - - 2. <u>0</u> - -			120m Silty SANDSTONE - fine grained, red-brow estimated medium strength. Hole Terminated at 1.20 m Practical Refusal	<i></i>					ROCK
<u>Wat</u> ▼	Wat (Dat - Wat I Wat <u>ata Cha</u> G tra	er Level e and time sh er Inflow er Outflow anges radational or ansitional strat efinitive or dis	own)	Notes, Sar U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photoi Dynan	Diame ample f nmenta jar, sea ulfate S c bag, a ample onisationic pene	§ er tube sample or CBR testing I sample aled and chilled on site) oil Sample ir expelled, chilled) n detector reading (ppm) trometer test (test depth interval shown) meter test (UCS kPa)	S F St VSt H	L ency Very Soft Soft Firm Stiff Very Stiff Hard Friable V L D	Vi La D M	25 50 10 20 20 20 20 20 20 20 20 20 20 20 20 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400 5005e n Dense	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%


APPENDIX B:

Results of Laboratory Testing

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

- т٠ 02 4968 4468
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:

Comments

hrin	k S	well	Ind	lex R	eport	t			Repo	ort No: SS	0I:NEVV21	W-5267-S Issue N
ent:		McCloy PO Box Dangar	2214	Managemo 2309	ent Pty Ltd			N	\bigwedge	Accredited for compl The results of the ter ncluded in this docu standards. Results provided rela	sts, calibrations and iment are traceable	I/or measurements to Australian/nation
ject No. ject Nar ject Loc	ne:		reek Su	= Ibdivision - evard, Edge		, Stage 2			D RECOGNISED	Approved Signat (Senior Geotech NATA Accredited Date of Issue: 2	nician) d Laboratory Nu	
mple	Deta	ails										
nple ID:			1W-5267	′-S02								
npling I	Netho	d: The re	sults outl	ined below a	apply to the	sample as i	received					
terial:		Gravel	ly Sandy	Clay			Date Sa	-	8/12/2021			
irce:		On-Site					Date Sul	bmitted:	10/12/2021			
ecificati			ecificatio									
		1: BH202		0.75m)								
e Teste	d:	14/12/2	2021									
ell Te					AS 12	89.7.1.1					AS	1289.7.
		tion (%):		-0.			11	on drying (3.3		
^	onter	nt before	(%):	19	.2		11	-	re Content			
isture C	onter	nt after (%		20				rt material		1%		
isture C . Unc. C	onter	Strengt	before	e (kPa): 57	0		Crumbli	ing during	shrinkage	: Nil		
isture C . Unc. C	onter	•	before	e (kPa): 57	0		Crumbli		shrinkage		-	
isture C . Unc. C	onter omp. omp.	Strengt Strengt	before	e (kPa): 57	0		Crumbli	ing during	shrinkage	: Nil		
isture C . Unc. C . Unc. C	onter omp. omp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C	onter omp. omp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C	onter omp. omp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C	conter Comp. Comp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S	ionter iomp. iomp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S	conter Comp. Comp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S	ionter iomp. iomp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S ^MSI (%) =	ionter iomp. iomp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S ^MSI (%) =	ionter iomp. iomp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S ^MSI (%) =	onter comp. comp. comp. comp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S ^MSI (%) =	onter comp. comp. comp. comp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S ^MSI (%) =	onter comp. comp. comp. comp.	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
isture C . Unc. C . Unc. C rink S ^MSI (%) =	Conter Comp. Com. Com. Com. Com. Com. Com. Com. Com	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S	Conter Comp. Com. Com. Com. Com. Com. Com. Com. Com	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S ^MSI (%) =	Conter Comp. Com. Com. Com. Com. Com. Com. Com. Com	Strengt Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil		
isture C . Unc. C . Unc. C rink S ^MSI (%) =	Conter Comp.	Strengt	before	e (kPa): 57	0	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	45.0	50.0
isture C . Unc. C . Unc. C rink S ^MSI (%) =	Conter Comp.	Strengt	h beford h after (e (kPa): 57 (kPa): 50	0	20.0	Crumbli Crackin	ing during g during s Sw ell	shrinkage:	P: Nil Minor		50.0

Comments

	k Sw	ell Ind	dex R	epor	t			Repo	ort No: 55	01. INE VVZ 1	W-5267-S Issue N
ient:	PO	Cloy Projec Box 2214 ıgar NSW	t Managem 2309	ent Pty Ltd	I		N		Accredited for compl The results of the tes included in this docu standards. Results provided rela	sts, calibrations and ment are traceable	/or measurements to Australian/nation
oject No. oject Nar oject Loc	me: Bru)F ubdivision - evard, Edge		2, Stage 2		WORLD RECOGNISED ACCREDITATION BACCR				
ample	Details										
mple ID:		EW21W-526	7-S03								
mpling M	Method: Th	ne results ou	tlined below a	apply to the	sample as r						
aterial:		ravelly Sand	y Clay			Date Sa	-	8/12/2021			
urce:	-	n-Site Insitu				Date Su	bmitted:	10/12/2021			
ecificatio		o Specificatio									
te Teste		H203 - (0.40 1/12/2021	- 0.55M)								
	-	., 12,2021			00 7 4 4	Christ	Tast				1000 7
well Te	est aturation ((0/.).	0		89.7.1.1		K Test on drying ((0/.)•	1.0	A5	1289.7. ⁻
	content be		-0. 22			11		re Content	1.0 • (%)• 18.6		
	content aft	. ,	26				rt material		4%		
			re (kPa): 22					shrinkage			
			• •			11		-			
	comp. Stre	ength after	(kPa): 12	0		Crackin	g during s	nrinkage:	Major	•	
t. Unc. C	-	ength after	(kPa): 12	.0		Crackin	g during s	nrinkage:	Major		
t. Unc. C	-	ength after	(kPa): 12		Shrinkage		g during s	-	Major		
	-	ength after	(kPa): 12		Shrinkage			-	Major		
st. Unc. C	-	ength after	(kPa): 12		Shrinkage			-	Major		· · · · · · · · · · · · · · · · · · ·
t. Unc. C	Swell	ength after	(kPa): 12		Shrinkage			-	Major		· · · · · · · · · · · · · · · · · · ·
t. Unc. C	Swell	ength after	(kPa): 12		Shrinkage			-	Major		
t. Unc. C	Swell	ength after	(kPa): 12		Shrinkage			-	Major		······
t. Unc. C hrink S	5well	ength after	(kPa): 12		Shrinkage			-	Major		
t. Unc. C nrink S Msg (%) Ila	5well	ength after	(kPa): 12		Shrinkage			-	Major		
nt. Unc. C	5well	ength after	(kPa): 12		Shrinkage			-	Major	· · · · · · · · · · · · · · · · · · ·	
t. Unc. C nrink S Ms3 (%) He	5 .0 - · · · · ·	ength after	(kPa): 12		Shrinkage			-	Major		
t. Unc. C nrink S Msg (%) Ila	5.0	ength after	(kPa): 12		Shrinkage			-	Major		
nt. Unc. C	5 .0 - · · · · ·	ength after	(kPa): 12		Shrinkage			-	Major		
t. Unc. C	5.0	ength after	(kPa): 12		Shrinkage			-	Major		
nt. Unc. C	5.0	ength after	(kPa): 12		Shrinkage			-	Major		
t. Unc. C nrink S Ms3 (%) He	5.0	ength after	(kPa): 12		Shrinkage			-	Major		
st. Unc. C hrink S MsB (%) IIa	5.0	ength after	(kPa): 12	15.0	Shrinkage			-	Major	45.0	50.0

Comments

Form No: 18932, Report No: SSI:NEW21W-5267-S03

	k Sw	ell Inc	dex R	eport	t			керс			W-5267-S Issue N
ent:	PO	Cloy Project Box 2214 Igar NSW	-	ent Pty Ltd			N		Accredited for comp The results of the te ncluded in this docu standards. Results provided rel	sts, calibrations and iment are traceable	I/or measurements to Australian/nation
oject No. oject Nar oject Loc	ne: Bru	V18P-0170 sh Creek Si taring Boul	ubdivision -		, Stage 2		WORLD RECOGNISED ACCREDITATION BACCREDITATION BACCREDITATION ACCREDITATION Bate of Issue: 21/12/2021				
mple	Details										
mple ID:		EW21W-526	7-S04								
mpling N	Method: Th	ne results out	lined below	apply to the	sample as r	eceived					
terial:		ravelly Sandy	y Clay			Date Sa	-	8/12/2021			
urce:		n-Site Insitu				Date Su	bmitted:	10/12/2021			
ecificati		o Specificatio									
-		H203 - (1.40	- 1.55m)								
te Teste	-	/12/2021									
well Te					89.7.1.1	Shrinl		•		AS	1289.7.
	aturation		-0			11	on drying (-	1.7		
	ontent be	• •	24			11	ge Moistu				
	ontent aft		28 28 (1/D e): 07				rt material		5%		
	-	ngth befor	• •			11	ing during g during s	-	e: Nil Major		
	-	ingth alter	(Ki d). 14	.0			g during 3	innikaye.	Iniajoi		
hrink S	Swell				Chrinker		Sw ell				
				-	Shrinkage	-	Swei				
	10.0 + · · · ·										
	10.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	10.0 - · · · ·										
Esw	-										
%) Esw	10.0						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
ell (%) Esw	-										
	- 5.0 - · · · · ·										
	-				- -	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	- 5.0 - · · · · ·				- B * B * B *		·····				
	5.0 - · · · · · · · · · · · · · · · · · ·					•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	- 5.0 - · · · · ·		• • • • • • • • • • • • • • • • • • •		- 1 * 1 * 1		· · · · · · · · · · · · · · · · · · ·				·····
Shrink (%) Esh - Swell (%) Esw	5.0 - · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			- B * B * B *		· · · · · · · · · · · · · · · · · · ·				·····
	-5.0						•				· · · · · · · · · · · · · · · · · · ·
	5.0 - · · · · · · · · · · · · · · · · · ·										
	-5.0	5.0	10.0	15.0	20.0	25.0 sture Conte	30.0	35.0	40.0	45.0	50.0

Comments

Shrin	k Sw	ell Ind	dex R	epor	t			Repo	ort No: SS	SI:NEW21	W-5267-S Issue No
lient:	PO	Cloy Projec Box 2214 ıgar NSW	t Managem 2309	ent Pty Lto	1		N		Accredited for comp The results of the te included in this docu standards. Results provided rel	sts, calibrations and iment are traceable	l/or measurements to Australian/nationa
roject No. roject Nan roject Loc	ne: Brus)F ubdivision - evard, Edg		2, Stage 2			EDITATION	Approved Signat (Senior Geotech NATA Accredited Date of Issue: 2	nician) d Laboratory Nu	
ample	Details										
ample ID:		EW21W-526	7-S05								
Sampling N	lethod: Th	ne results ou	tlined below	apply to the	sample as	received					
laterial:	G	ravelly Sand	y Clay			Date Sa	mpled:	8/12/2021			
ource:		n-Site Insitu				Date Su	bmitted:	10/12/2021	1		
Specificatio		o Specificatio									
Sample Loo			- 1.00m)								
Date Tester		/12/2021									
Swell Te					89.7.1.1					AS	1289.7.1
well on Sa				.2			on drying (0.5		
loisture C		• •		2.8			age Moistu				
Noisture C				5.9		11	ert material		3%		
st. Unc. C	-	-	re (kPa): 49	90 10			ling during ng during s	-			
	-	ingth arter		10			ig during s	iiiiikaye.			
Shrink S	well				Shrinkag	~	Swell				
					Onninag		ow ci				
	10.0										
				:							
2	-					÷				į	÷
ell (%) Esw	5.0 - · · · ·										
(%)						:			:		:
	-								-		-
NS.	0.0			·							· · · ·
sh								:			
Ŭ (-			:							
Shrink (%) Esh - Sw	-5.0 - · · · ·										
Irint		÷		:	÷	÷	÷	:	÷	÷	÷
*	t			:	-	÷		÷			÷
0	-10.0 - · · · ·										
0 U											
U)		5.0	10.0	15.0	20.0	DE O	20.0	25 0	10.0	15 0	50 0
U)	0.0	5.0	10.0	15.0	20.0	25.0 isture Conte	30.0	35.0	40.0	45.0	50.0

Comments

Form No: 18932, Report No: SSI:NEW21W-5267-S05

Report No: SSI:NEW21W-5267-S06

	PO	Cloy Projec Box 2214 gar_NSW	t Managem 2309	ent Pty Ltd	I			i 🔨	The results of the te	liance with ISO/IEC sts, calibrations and iment are traceable	-
roject No.: roject Nam roject Loca	e: Brus		₽F ubdivision⊸ evard, Edg		2, Stage 2			D RECOGNISED	Approved Signat Senior Geotech	tory: Brent Culler nician) d Laboratory Nur	
ample [Details										
ample ID:		W21W-526									
			tlined below	apply to the	sample as r						
aterial:		avelly Sand	y Clay			Date Sa	-	8/12/2021			
ource:		n-Site Insitu				Date Sul	bmitted:	10/12/2021			
pecificatio		Specificatio									
ample Loc ate Tested		1205 - (0.70 /12/2021	- 0.85m)								
well Tes		/12/2021		AC 40	89.7.1.1	Chrint	Toot				1289.7.1
vell on Sa		%)·	_1	.2 A3 12	09.7.1.1		on drying ((%):	1.6	AJ	1209.7.1
oisture Co	-	-		.z).8				re Content			
oisture Co		• • •		3.4		11	rt material		6%		
		. ,	re (kPa): 30					shrinkage			
	-	ngth after	• •	90		11	g during s	-	Mode	erate	
hrink S	المر	-									
	NCII			•	Shrinkage	e 🔶	Sw ell				
	10.0										
							:				
3	+	÷					÷				
Swell (%) Esw	5.0 - · · · ·										
(%)		:		-	-		:			-	:
e	-	÷					:				
>	0.0	1	· · · ·				· · ·	· · · ·			· · ·
- Sw				* ****		★ :	:				÷
1	.										:
1							:				
1	-5.0 - · · · ·										
1	-5.0 - · · · ·								• • • • • •		
Shrink (%) Esh - Sw	-5.0 - · · · ·								- - - - - - - - - - - - - - - - - - -		
Shrink (%) Esh -	-5.0						· · · · · · · · · · · · · · · · · · ·				
Shrink (%) Esh -	-	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0

Comments

 QUALTEST Laboratory (NSW) Pty Ltd (20708)

 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

 T:
 02 4968 4468

- 1:
 02 4968 4468

 F:
 02 4960 9775

 E:
 admin@qualtest.com.au

 W:
 www.qualtest.com.au

 ABN:
 98 153 268 896

Report No: MAT:NEW21W-5267-S07 Issue No: 1 **Material Test Report** McCloy Project Management Pty Ltd PO Box 2214 Client: Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national Dangar NSW 2309 standards. ΝΑΤΑ Results provided relate only to the items tested or sampled. Cull B Project No.: NEW18P-0170F Approved Signatory: Brent Cullen Project Name: Brush Creek Subdivision - Precinct 2, Stage 2 BLD RECO (Senior Geotechnician) ACCREDITATION NATA Accredited Laboratory Number: 18686 Date of Issue: 11/01/2022 Project Location: Bootaring Boulevard, Edgeworth

Sample Details

Sample ID:	NEW21W-5267-S07
Date Sampled:	08/12/2021
Date Received:	10/12/2021
Source:	On-Site Insitu
Material:	Gravelly Sandy Clay
Specification:	No Specification
Sample Location:	The results outlined below apply to the sample as received BH206 - (0.50 - 0.65m)

Test Results

Description	Mathad	Decult	Limite
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	8.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	31	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	16	
Plasticity Index (%)	AS 1289.3.3.1	15	
Date Tested		10/01/2022	

Comments

Report No: SSI:NEW21W-5267-S08

		ell Ind			-						
ent:	PO I	loy Projec 3ox 2214 gar NSW	t Managem 2309	ent Pty Lto	1		N	Th ind sta	e results of the tes cluded in this docur andards.		
oject No.: oject Nan oject Loc	ne: Brus)F ubdivision - evard, Edg		2, Stage 2			REDITATION N	Senior Geotechr	Laboratory Nu	
imple I	Details										
mple ID:		W21W-526									
			tlined below	apply to the	sample as r			0/40/0004			
terial: urce:		avelly Sand	y Clay			Date Sar Date Sul	-	8/12/2021			
ecificatio		-Site Insitu				Date Sul	omilieu.	10/12/2021			
	cation: BF	Specificatio									
te Tested		/12/2021	- 0.0511)								
vell Te	st			AS 12	89711	Shrink	Test			۵S	1289.7.1
	aturation (%):	-1		00.7.1.1		on drying ((%):	1.1		1200.7.1
	ontent bef	-		5.0				re Content			
	ontent afte	. ,	22	2.6			rt material		8%		
	omp. Stre	ngth befoi	re (kPa): 40	0			ing during	shrinkage:	Nil		
t. Unc. C	omp. Stre omp. Stre	-				Crumbli	ing during g during s	-	Nil Minor		
t. Unc. C t. Unc. C	omp. Stre	-				Crumbli		-			
t. Unc. C	omp. Stre	-			Shrinkage	Crumbli Crackin		hrinkage:			
t. Unc. C t. Unc. C	omp. Stre	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C	omp. Stre	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			·····
t. Unc. C t. Unc. C Irink S	omp. Stre	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
t. Unc. C t. Unc. C Irink S	omp. Stre	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C Irink S	well	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
t. Unc. C t. Unc. C Irink S	well	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:		· · · · · · · · · · · · · · · · · · ·	
t. Unc. C t. Unc. C nrink S Msg (%) IIaMS	well	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C nrink S Msg (%) IIaMS	5.0 - · · · ·	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C nrink S Msg (%) IIaMS	5.0 - · · · ·	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C nrink S Msg (%) IIaMS	5.0 - · · · ·	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C Irink S	5.0	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C nrink S Msg (%) IIaMS	5.0	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C Drink S Nuink (%) Esw (%) Esw (%) Esh	5.0	-		0	Shrinkage	Crumbli Crackin	g during s	hrinkage:			
t. Unc. C t. Unc. C Drink S Nuink (%) Esw (%) Esw (%) Esh	5.0	-		0	20.0	25.0	g during s Sw ell	hrinkage:		45.0	50.0
t. Unc. C t. Unc. C Drink S Nuink (%) Esw (%) Esw (%) Esh	5.0	ngth after	(kPa): 29		20.0	Crumbli Crackin	g during s Sw ell	hrinkage:	Minor		50.0

Comments

Form No: 18932, Report No: SSI:NEW21W-5267-S08

nrin	k Swe	ell Ind	dex R	epor	t			Repo	ort No: SS	01:NEVV21	VV-5267-S Issue N
ient:	McC PO I		t Managem	-			N		Accredited for compl The results of the tes ncluded in this docu standards. Results provided rela	sts, calibrations and iment are traceable	l/or measurements to Australian/nation
oject No. oject Nar oject Loc	me: Brus)F ubdivision - evard, Edge	2, Stage 2		WORLD RECOGNISED ACCREDITATION B. CULLA Approved Signatory: Brent Cullen (Senior Geotechnician) NATA Accredited Laboratory Number: 186 Date of Issue: 21/12/2021						
ample	Details										
ample ID:	: NE	W21W-526									
			tlined below	apply to the	sample as i						
laterial: ource:		avelly Sand	y Clay			Date Sa	mpled: bmitted:	8/12/2021			
ource. Specificati		n-Site Insitu Specificatio	าท			Date Su	binittea.	10/12/2021			
-	cation: BH										
ate Teste		/12/2021	/								
Swell Te	est			AS 12	89.7.1.1	Shrinl	k Test			AS	1289.7.
	aturation (%):	-0				on drying	(%):	0.9		
	ontent bef		22	4			-	re Content	t (%): 17.5		
	ontent afte		24			11	rt materia		8%		
			o (kDa), co	0		Crumbli	ina durina	shrinkage	: Nil		
st. Unc. C	-	-						-			
st. Unc. C	Comp. Stre	-						shrinkage:	Minor		
st. Unc. C	Comp. Stre	-			Christer	Crackin	g during s	shrinkage:			
	Comp. Stre	-			Shrinkage	Crackin		shrinkage:			
st. Unc. C	Somp. Stree	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C	Comp. Stre	-			Shrinkage	Crackin	g during s	shrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C	Somp. Stree	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C	Somp. Stree	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C hrink S MsB (%) IIa	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell 10.0 5.0	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell 10.0 5.0	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell	-			Shrinkage	Crackin	g during s	shrinkage:			
st. Unc. C Shrink S	Swell	ngth after	(kPa): 29			Crackin	s during s	shrinkage:	Minor		
st. Unc. C Shrink S	Swell	-			20.0	Crackin	g during s	shrinkage:		45.0	50.0

Comments

Form No: 18932, Report No: SSI:NEW21W-5267-S09

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304 T: 02 4968 4468

- 1:
 02 4968 4468

 F:
 02 4960 9775

 E:
 admin@qualtest.com.au

 W:
 www.qualtest.com.au

 ABN:
 98 153 268 896

Report No: MAT:NEW21W-5267-S10 Issue No: 1 **Material Test Report** McCloy Project Management Pty Ltd PO Box 2214 Client: Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national Dangar NSW 2309 standards. ΝΑΤΑ Results provided relate only to the items tested or sampled. Cull B Project No.: NEW18P-0170F Approved Signatory: Brent Cullen Project Name: Brush Creek Subdivision - Precinct 2, Stage 2 BLD RECO (Senior Geotechnician) ACCREDITATION NATA Accredited Laboratory Number: 18686 Date of Issue: 11/01/2022 Project Location: Bootaring Boulevard, Edgeworth

Sample Details

Sample ID:	NEW21W-5267-S10
Date Sampled:	08/12/2021
Date Received:	10/12/2021
Source:	On-Site Insitu
Material:	Gravelly Sandy Clay
Specification:	No Specification
Sample Location:	The results outlined below apply to the sample as received BH209 - (0.60 - 0.75m)

Test Results

Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)			
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	46	
Plastic Limit (%)	AS 1289.3.2.1	17	
Plasticity Index (%)	AS 1289.3.3.1	29	
Date Tested		10/01/2022	

Comments

APPENDIX C:

CSIRO Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES						
Class	Foundation						
А	Most sand and rock sites with little or no ground movement from moisture changes						
S	Slightly reactive clay sites with only slight ground movement from moisture changes						
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes						
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes						
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes						
A to P	Filled sites						
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise						

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- · Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

Trees can cause shrinkage and damage

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

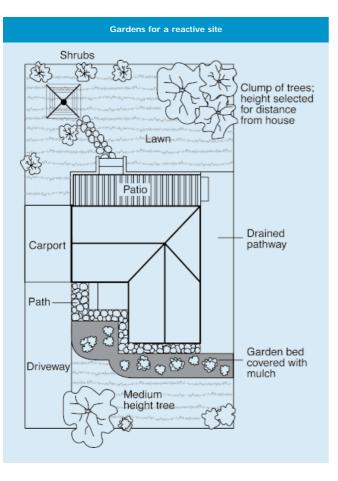
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS								
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category						
Hairline cracks	<0.1 mm	0						
Fine cracks which do not need repair	<1 mm	1						
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2						
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3						
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4						

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited